
Industrial Communication Toolbox™
User's Guide

R2023a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Industrial Communication Toolbox™ User's Guide
© COPYRIGHT 2004–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
June 2004 Online only New for Version 1.0 (Release 14)
August 2004 Online only Revised for Version 1.1 (Release 14+)
October 2004 Online only Revised for Version 1.1.1 (Release 14SP1)
March 2005 Online only Revised for Version 1.1.2 (Release 14SP2)
April 2005 Online only Revised for Version 2.0 (Release 14SP2+)
September 2005 Online only Revised for Version 2.0.1 (Release 14SP3)
March 2006 Online only Revised for Version 2.0.2 (Release 2006a)
September 2006 Online only Revised for Version 2.0.3 (Release 2006b)
March 2007 Online only Revised for Version 2.0.4 (Release 2007a)
September 2007 Online only Revised for Version 2.1 (Release 2007b)
March 2008 Online only Revised for Version 2.1.1 (Release 2008a)
October 2008 Online only Revised for Version 2.1.2 (Release 2008b)
March 2009 Online only Revised for Version 2.1.3 (Release 2009a)
September 2009 Online only Revised for Version 2.1.4 (Release 2009b)
March 2010 Online only Revised for Version 2.1.5 (Release 2010a)
September 2010 Online only Revised for Version 2.1.6 (Release 2010b)
April 2011 Online only Revised for Version 3.0 (Release 2011a)
September 2011 Online only Revised for Version 3.1 (Release 2011b)
March 2012 Online only Revised for Version 3.1.1 (Release 2012a)
September 2012 Online only Revised for Version 3.1.2 (Release 2012b)
March 2013 Online only Revised for Version 3.2 (Release 2013a)
September 2013 Online only Revised for Version 3.3 (Release 2013b)
March 2014 Online only Revised for Version 3.3.1 (Release 2014a)
October 2014 Online only Revised for Version 3.3.2 (Release 2014b)
March 2015 Online only Revised for Version 3.3.3 (Release 2015a)
September 2015 Online only Revised for Version 4.0 (Release 2015b)
March 2016 Online only Revised for Version 4.0.1 (Release 2016a)
September 2016 Online only Revised for Version 4.0.2 (Release 2016b)
March 2017 Online only Revised for Version 4.0.3 (Release 2017a)
September 2017 Online only Revised for Version 4.0.4 (Release 2017b)
March 2018 Online only Revised for Version 4.0.5 (Release 2018a)
September 2018 Online only Revised for Version 4.0.6 (Release 2018b)
March 2019 Online only Revised for Version 4.0.7 (Release 2019a)
September 2019 Online only Revised for Version 4.0.8 (Release 2019b)
March 2020 Online only Revised for Version 5.0 (Release 2020a)
September 2020 Online only Revised for Version 5.0.1 (Release 2020b)
March 2021 Online only Revised for Version 5.0.2 (Release 2021a)
September 2021 Online only Revised for Version 5.0.3 (Release 2021b)
March 2022 Online only Revised for Version 6.0 (Release 2022a)

(Renamed from OPC Toolbox™ User's Guide)
September 2022 Online only Revised for Version 6.1 (Release 2022b)
March 2023 Online only Revised for Version 6.2 (Release 2023a)

Getting Started

Introduction
1

Industrial Communication Toolbox Product Description 1-2

Overview of OPC, Servers, and the Toolbox . 1-3
About Industrial Communication Toolbox Software 1-3
About OPC . 1-4
OPC Servers . 1-4
System Requirements . 1-5

Get Command-Line Function Help . 1-6

Set Up Industrial Communication Toolbox Software for OPC 1-7
Preparation Overview . 1-7
Set Up for Communicating with OPC DA and OPC HDA Servers 1-7
Install an OPC DA or HDA Simulation Server for OPC Classic Examples

. 1-14
Set Up for Communicating with OPC UA Servers 1-15
Install an OPC UA Simulation Server for OPC UA Examples 1-15
(Optional) Install a Local Discovery Service for OPC UA Server

Discovery Examples . 1-15

Troubleshooting OPC Issues . 1-17
Unable to Find an OPC Server . 1-17
“Class not registered” Error . 1-17
Unable to Query the Server . 1-17
Unable to Connect to Server . 1-17
Unable to Create a Group . 1-18
Error While Querying Interface . 1-18

Quick Start: Using OPC Data Access Functions
2

Access Data at the Command Line . 2-2
DA Programming Overview . 2-2
Step 1: Locate Your OPC Data Access Server 2-2
Step 2: Create an OPC Data Access Client Object 2-3
Step 3: Connect to the OPC Data Access Server 2-3

v

Contents

Step 4: Create an OPC Data Access Group Object 2-4
Step 5: Browse the Server Name Space . 2-4
Step 6: Add OPC Data Access Items to the Group 2-5
Step 7: View All Item Values . 2-6
Step 8: Configure Group Properties for Logging 2-6
Step 9: Log OPC Server Data . 2-7
Step 10: Plot the Data . 2-7
Step 11: Clean Up . 2-7

Quick Start: Using the OPC Data Access Explorer
3

Access Data with the OPC Data Access Explorer 3-2
Procedure Overview . 3-2
Step 1: Open the OPC Data Access Explorer 3-2
Step 2: Locate Your OPC Server . 3-3
Step 3: Create an OPC Data Access Client Object 3-5
Step 4: Connect to the OPC Server . 3-7
Step 5: Create an OPC Data Access Group Object 3-8
Step 6: Browse the Server Name Space . 3-10
Step 7: Add OPC Data Access Items to the Group 3-12
Step 8: View All Item Values . 3-14
Step 9: Configure Group Properties for Logging 3-15
Step 10: Log OPC Server Data . 3-17
Step 11: Plot the Data . 3-17
Step 12: Clean Up . 3-19

Quick Start: Using OPC Historical Data Access Functions
4

Access Historical Data . 4-2
HDA Programming Overview . 4-2
Step 1: Locate Your OPC Historical Data Access Server 4-2
Step 2: Create an OPC Historical Data Access Client Object 4-3
Step 3: Connect to the OPC Historical Data Access Server 4-3
Step 4: Retrieve Historical Data . 4-3
Step 5: Plot the Data . 4-4
Step 6: Clean Up . 4-4

vi Contents

Data Access User's Guide

Introduction to OPC Data Access (DA)
5

Discover Available Data Access Servers . 5-2
Prerequisites . 5-2
Determine Server IDs for a Host . 5-2

Connect to OPC Data Access Servers . 5-4
Overview . 5-4
Create a DA Client Object . 5-4
Connect a Client to the DA Server . 5-5
Browse the OPC DA Server Name Space . 5-5

Using OPC Data Access Objects
6

Create OPC Data Access Objects . 6-2
Overview to Objects . 6-2
Toolbox Object Hierarchy for the Data Access Standard 6-2
How Toolbox OPC Objects Relate to OPC DA Servers 6-3
Create Data Access Group Objects . 6-4
Create Data Access Item Objects . 6-6
Build an Object Hierarchy with a Disconnected Client 6-7
Create OPC Data Access Object Vectors . 6-8
Work with Public Groups . 6-10

Configure OPC Data Access Object Properties 6-13
Purpose of Object Properties . 6-13
View the Values of Object Properties . 6-13
View the Value of a Particular Property . 6-14
Get Information About Object Properties . 6-15
Set the Value of an Object Property . 6-15
View a List of All Settable Object Properties 6-16

Delete Objects . 6-18

Save and Load Objects . 6-20

Reading, Writing, and Logging OPC Data
7

Read and Write Data on OPC DA Server . 7-2
Introduction to Reading and Writing . 7-2
Read Data from an Item . 7-2

vii

Write Data to an Item . 7-4
Read and Write Multiple Values . 7-6

Data Change Events and Subscription . 7-8
Introduction to Data Change Events . 7-8
Configure OPC Objects for Data Change Events 7-8
How Data Change Events are Processed . 7-9
Customize the Data Change Event Response 7-10

Log OPC Server Data . 7-11
How Data Is Logged . 7-11
Configure a Logging Session . 7-13
Execute a Logging Task . 7-15
Get Logged Data into the MATLAB Workspace 7-16

Working with OPC Data
8

OPC Data: Value, Quality, and TimeStamp . 8-2
Introduction to OPC Data . 8-2
Relationship Between Value, Quality, and TimeStamp 8-2
How Value, Quality, and TimeStamp Are Obtained 8-3

Work with Structure-Formatted Data . 8-6
When Structures Are Used . 8-6
Perform a Read Operation on Multiple Items 8-6
Interpret Structure-Formatted Data . 8-7
When to Use Structure-Formatted Data . 8-9
Convert Structure-Formatted Data to Array Format 8-9

Array-Formatted Data . 8-11
Array Content . 8-11
Conversion of Logged Data to Arrays . 8-11

Work with Different Data Types . 8-13
Conversion Between MATLAB Data Types and COM Variant Data

Types . 8-13
Conversion of Values Written to an OPC Server 8-14
Conversion of Values Read from an OPC Server 8-14
Handling Arrays for Item Values . 8-15

Using Events and Callbacks
9

Use the Default Callback Function . 9-2
Overview to Callback Example . 9-2
Step 1: Create OPC Group Objects . 9-2
Step 2: Configure the Logging Task Properties 9-2
Step 3: Configure the Callback Properties . 9-2

viii Contents

Step 4: Start the Logging Task . 9-3
Step 5: Clean Up . 9-3

Event Types . 9-4

Retrieve Event Information . 9-8
Event Structures . 9-8
Access Data in the Event Log . 9-10

Create and Execute Callback Functions . 9-12
Create Callback Functions . 9-12
Specify Callback Functions . 9-13
View Recently Logged Data . 9-15

Using the OPC Block Library
10

Block Library Overview . 10-2

Read and Write Data from a Model . 10-3
Example Overview . 10-3
Step 1: Create New Model in Simulink Editor 10-3
Step 2: Open the OPC Block Library . 10-3
Step 3: Drag OPC Blocks into the Editor . 10-4
Step 4: Drag Other Blocks to Complete the Model 10-5
Step 5: Configure OPC Servers for the Model 10-5
Step 6: Specify the Block Parameter Values 10-7
Step 7: Connect the Blocks . 10-9
Step 8: Run the Simulation . 10-10

Use the OPC Client Manager . 10-11
Introduction to the OPC Client Manager . 10-11
Add Clients to the OPC Client Manager . 10-11
Remove Clients from the OPC Client Manager 10-12
Modify the Server Timeout Value for a Client 10-12
Control Client/Server Connections . 10-12

ix

Properties
11

Historical Data Access User's Guide

Introduction to OPC Historical Data Access (HDA)
12

OPC Historical Data Access . 12-2

Discover Available HDA Servers . 12-4
Prerequisites . 12-4
Determine HDA Server IDs for a Host . 12-4

Connect to OPC HDA Servers . 12-5
Overview . 12-5
Create an HDA Client Object . 12-5
View a Summary of a Client Object . 12-5
Connect an OPC HDA Client Object to the HDA Server 12-5
Browse the OPC Server Name Space . 12-6
Get an OPC HDA Server Name Space . 12-6

Using OPC HDA Client Objects
13

OPC HDA Objects . 13-2

Locate an OPC HDA Server . 13-3

Create an OPC HDA Client Object . 13-4

Connect to the OPC HDA Server . 13-5
Browse the OPC Server Name Space . 13-5

Set Client Properties . 13-6
Set the Timeout Property . 13-6

Retrieve an OPC HDA Server Name Space . 13-7

Read Item Attributes . 13-9

x Contents

Reading OPC Historical Data
14

Overview to Reading Historical Data . 14-2

Read Historical Data Over a Time Range . 14-3

Read Historical Data at Specific Times . 14-4

Read Processed Aggregate Data . 14-5

Retrieve Large Historical Data Sets . 14-6

Reading Modified Data . 14-7

Native MATLAB Data Types from Read Operations 14-8
Request Structure Output . 14-8
Request MATLAB Numeric Data Output . 14-8
Request Cell Array Output . 14-8

Disconnect from HDA Servers . 14-9

Clean Up OPC HDA Objects . 14-10

Working with OPC HDA Data Objects
15

Introduction to OPC HDA Data Objects . 15-2

Display Data Objects . 15-3

OPC HDA Quality Values . 15-4

Manipulate Data Using OPC HDA Objects . 15-5
Resample Data Objects to Include All Available Time Stamps Using

tsunion . 15-5
Resample Data Objects to Include All Common Time Stamps Using

tsintersect . 15-6
Resample Data to a New Set of Time Stamps 15-6
Convert OPC HDA Data Objects to MATLAB Numeric Data Types

. 15-7

xi

OPC HDA and UA Classes
16

Unified Architecture User’s Guide

OPC Unified Architecture (UA)
17

About OPC Unified Architecture . 17-2

OPC UA Components . 17-3
Overview . 17-3
OPC UA Client . 17-3
OPC UA Node . 17-3
OPC UA Data . 17-4
OPC UA Quality . 17-4
Working with Time in OPC UA . 17-4

OPC UA Server Data Types . 17-5

OPC UA Security . 17-7

OPC UA Certificate Management . 17-9

OPC UA Aggregate Functions . 17-10
Introduction . 17-10
Available Aggregate Functions on an OPC UA Server 17-10
OPC UA Standard Aggregate Functions . 17-10

Access Data from OPC UA Servers . 17-13
OPC UA Programming Overview . 17-13
Step 1: Locate Your OPC UA Server . 17-13
Step 2: Create an OPC UA Client and Connect to the Server 17-14
Step 3: Browse OPC UA Server Namespace 17-15
Step 4: Read Current Values from the OPC UA Server 17-16
Step 5: Read Historical Data from the OPC UA Server 17-17
Step 6: Plot the Data . 17-18
Step 7: Clean Up . 17-18

xii Contents

Non-OPC Technologies

Controlling Devices Using Modbus
18

Modbus Interface Supported Features . 18-2
Modbus Capabilities . 18-2
Supported Platforms for Modbus . 18-2

Create a Modbus Connection . 18-3

Configure Properties for Modbus Communication 18-5

Read Data from a Modbus Server . 18-8
Types of Data You Can Read over Modbus . 18-8
Read Coils over Modbus . 18-8
Read Inputs over Modbus . 18-9
Read Input Registers over Modbus . 18-9
Read Holding Registers over Modbus . 18-10
Specify Server ID and Precision . 18-10
Read Mixed Data Types . 18-11

Read Temperature from a Remote Temperature Sensor 18-13

Write Data to a Modbus Server . 18-14
Types of Data You Can Write to over Modbus 18-14
Write Coils over Modbus . 18-14
Write Holding Registers over Modbus . 18-14

Write and Read Multiple Holding Registers 18-16

Modify the Contents of a Holding Register Using a Mask Write . . 18-18

Use the Modbus Explorer App . 18-19

Configure a Connection in the Modbus Explorer 18-20
Communicate over TCP/IP . 18-20
Communicate over Serial RTU . 18-21

Read Coils, Inputs, and Registers in the Modbus Explorer 18-23
Edit the Read Registers Table . 18-24
Import or Export Read Data . 18-25

Write to Coils and Holding Registers in the Modbus Explorer . . . 18-26

Control a PLC Using the Modbus Explorer 18-28

Generate a Script from Your Modbus Explorer Session 18-33

Troubleshooting the Modbus Interface . 18-36
Supported Platforms . 18-36

xiii

Configuration and Connection . 18-36
Other Troubleshooting Tips for Modbus . 18-37

OPC Information Reference

OPC Quality
A

OPC Quality . A-2

Major Quality . A-3

Quality Substatus . A-4

Limit Status . A-6

OPC DA Server Item Properties
B

OPC DA Server Item Properties . B-2

OPC Item Property Set . B-3

OPC Specific Properties . B-4

OPC Recommended Properties . B-5

OPC HDA Item Attributes
C

OPC HDA Item Attributes . C-2

xiv Contents

Functions
19

Blocks
20

Industrial Communication Toolbox Examples
21

Install a Simulation Server for OPC Examples . 21-2

Acquire Data from an OPC Data Access Server . 21-3

Locate and Browse OPC Data Access Servers . 21-7

Create and Configure OPC Objects . 21-10

Manage OPC Data Access Objects . 21-14

Read and Write Data to an OPC Data Access Server 21-17

Log Data from an OPC Data Access Server . 21-21

View the OPC Event Log . 21-24

Monitor Logging Progress with Callbacks . 21-26

Update MATLAB Plots While Logging OPC Data 21-28

Locate and Browse OPC Historical Data Access Servers 21-30

Acquire Data from an OPC Historical Data Access Server 21-33

Visualize and Preprocess OPC HDA Data . 21-37

Browse OPC UA Server Namespace . 21-44

Read and Write Current OPC UA Server Data . 21-51

Read Historical OPC UA Server Data . 21-56

Visualize and Preprocess OPC UA Data . 21-61

Read and Write to an OPC Data Access Server from Simulink 21-70

Use OPC Data to Test a Binary Distillation Column Plant Model 21-72

xv

Get Started Accessing Data from a PI Server . 21-74

Read Data from a PI Server . 21-77

Process PI Data Using Common MATLAB Operations 21-81

Get Started with MQTT . 21-88

Get Data from Subscribed Topics in an MQTT Client 21-90

Subscribe to an MQTT Topic with a Callback Function 21-93

Subscribe to an MQTT Wildcard Topic . 21-95

xvi Contents

Getting Started

17

Introduction

• “Industrial Communication Toolbox Product Description” on page 1-2
• “Overview of OPC, Servers, and the Toolbox” on page 1-3
• “Get Command-Line Function Help” on page 1-6
• “Set Up Industrial Communication Toolbox Software for OPC” on page 1-7
• “Troubleshooting OPC Issues” on page 1-17

1

Industrial Communication Toolbox Product Description
Exchange data over OPC UA, Modbus, MQTT, and other industrial protocols

Industrial Communication Toolbox provides access to live and historical industrial plant data directly
from MATLAB® and Simulink®. You can read, write, and log OPC Unified Architecture (UA) data from
devices such as distributed control systems, supervisory control and data acquisition systems, and
programmable logic controllers. You can also access plant and manufacturing data directly from
OSIsoft® PI servers, and use this data for process monitoring, process improvement, and predictive
maintenance applications.

You can work with data from live servers and data historians that conform to the OPC UA, OPC Data
Access (DA), and OPC Classic Historical Data Access (HDA) standards. When communicating over
OPC UA, you can securely connect to OPC UA servers using a variety of security modes, encryption
algorithms, and user authentication methods.

The toolbox includes Simulink blocks that let you model online supervisory control and perform
hardware-in-the-loop controller testing. In both MATLAB and Simulink, you can verify algorithms by
establishing a secure OPC UA connection to your plant and build connected digital twin models for
IIoT applications. The toolbox also supports communication with edge devices and cloud servers over
Modbus® and MQTT protocols.

1 Introduction

1-2

Overview of OPC, Servers, and the Toolbox
In this section...
“About Industrial Communication Toolbox Software” on page 1-3
“About OPC” on page 1-4
“OPC Servers” on page 1-4
“System Requirements” on page 1-5

About Industrial Communication Toolbox Software
Industrial Communication Toolbox software implements a hierarchical object-oriented approach to
communicating with OPC servers using the OPC Data Access and Historical Data Access Standards.
Using toolbox functions, you create OPC Data Access (DA) and Historical Data Access (HDA) Client
objects which represent the connection between MATLAB and an OPC server. Using properties of the
client objects you can control various aspects of the communication link, such as time out periods,
connection status, and storage of events associated with that client. “Connect to OPC Data Access
Servers” on page 5-4 and “Connect to OPC HDA Servers” on page 12-5 describe how to create
DA and HDA client objects respectively.

Once you establish a connection to an OPC DA server, you create Data Access Group objects
(dagroup objects) that represent collections of OPC Data Access Items. You then add Data Access
Item objects (daitem objects) to that group, for monitoring server item values from the OPC server
and writing values to the OPC server. You can use the dagroup object to perform such actions as
determining how often the items in the group must be updated, executing a MATLAB function when
the server provides notification of changes in item state, and other tasks related to the group. “Create
OPC Data Access Objects” on page 6-2 describes how to create and configure dagroup objects and
add daitem objects to a group.

Using OPC DA functionality, you can log records (a list of items that have changed, and their new
values) from an OPC Data Access Server to disk or to memory, for later processing. The logging task
is controlled by the dagroup object. “Log OPC Server Data” on page 7-11 describes how to log data
using the OPC logging mechanism.

The HDA functionality allows for the retrieval and analysis of historical data from HDA OPC servers.
Establishing a connection to an HDA server via the OPC HDA client object, allows you to retrieve
historical data for a range of times or at a specific time. Both raw and aggregated data collections
can be retrieved in the form of opc.hda.Data objects. These data objects provide numerous data
manipulation and display operations.

To work with the data you acquire, you must bring it into the MATLAB workspace. When the records
are acquired, the toolbox stores them in a memory buffer or on disk. The toolbox provides several
ways to bring one or more records of data into the workspace where you can analyze or visualize the
data.

You can enhance your OPC application by using DA event callbacks. The toolbox has defined certain
OPC software occurrences, such as the start of an acquisition task, as well as OPC server initiated
occurrences, such as notification that an item's state has changed, as events. You can associate the
execution of a particular function with a particular event.

When working in the Simulink environment, you can use blocks from the OPC block library to use live
OPC data as inputs to your model and update the OPC server with your model outputs. The Industrial

 Overview of OPC, Servers, and the Toolbox

1-3

Communication Toolbox OPC block library includes the capability of running Simulink models in
pseudo real time, by slowing the simulation to match the system clock. You can prototype control
systems, provide plant simulators, and perform optimization and tuning tasks using Simulink and the
Industrial Communication Toolbox OPC block library.

About OPC
Open Platform Communications (OPC) is a set of interoperability standards maintained by the OPC
Foundation (https://opcfoundation.org) for the exchange of data in the industrial automation
and other industries. OPC uses Microsoft® DCOM technology to provide a communication link
between OPC servers and OPC clients. OPC has been designed to provide reliable communication of
information in a process plant, such as a petrochemical refinery, an automobile assembly line, or a
paper mill.

Before you interact with OPC servers using Industrial Communication Toolbox software, you should
understand the OPC client-server relationship, how OPC servers organize their server items, and how
clients can interact with those server items. “Toolbox Object Hierarchy for the Data Access Standard”
on page 6-2 explains these concepts in detail.

OPC Servers
Industrial Communication Toolbox software acts an OPC Data Access and Historical Data Access
client application, capable of connecting to any OPC DA and HDA compliant server. By utilizing the
OPC Foundation standards, the toolbox does not require any knowledge about the internal
configuration and operation of the OPC server. Instead, the OPC Standard provides the common
mechanism for the server and client to interact with each other.

An OPC server is identified by a unique server ID. The server ID is unique to the computer on which
the server is located. A combination of the host name of the server computer, and the server ID of the
OPC server, provides a unique identifier for an OPC server on a network of computers.

OPC Server Name Spaces

All OPC servers are required to publish a name space, consisting of an arrangement of the name of
every server item (also known as an item ID) associated with that server. The name space provides
the internal map of every device and location that the server is able to monitor and/or update.

The following figure shows a portion of the name space on a typical OPC server.

Server Item

1 Introduction

1-4

https://opcfoundation.org

A server item represents a value on the OPC server that a client might be interested in. A server item
could represent a physical measurement device (such as a temperature sensor), a particular
component of a device (such as the set-point for a controller), or a variable or storage location in a
supervisory control and data acquisition (SCADA) system. Each server item is uniquely represented
on the server by a fully qualified item ID. The fully qualified item ID is usually made up of the path to
that server item in the tree, with each node name separated by a period character. In the previous
Server Item figure, the fully qualified item ID for the highlighted server item might be
Area01.UnitA.FIC01.PV.

Most OPC servers provide a hierarchical name space, where server items are arranged in a tree-like
structure. The tree can contain many different categories (called branch nodes), each with one or
more branches and/or leaf nodes. A leaf node contains no other branches, and often represents a
specific server Item. The fully qualified item ID of a server item is simply the `path' to that leaf node,
with a server-dependent separator.

Some OPC servers provide only a flat name space, where server items are all arranged in one single
group. You could consider a flat name space as a name space containing only leaf nodes.

It is possible to convert a hierarchical name space into a flat name space. It is not always possible to
convert a flat name space into a hierarchical name space.

For information on how to obtain the name space of an OPC server, see “Browse the OPC Server
Name Space” on page 12-6.

System Requirements
Industrial Communication Toolbox software provides the OPC Data Access client capabilities from
within MATLAB. To use this toolbox functionality, you need access to an OPC server that supports the
Data Access Specification version 2.05. In addition, you will need to ensure that you are able to
connect to those OPC servers from the computer on which the toolbox software is installed. For more
information on how to configure the client and server computers so that you can connect to an OPC
server, see “Set Up Industrial Communication Toolbox Software for OPC” on page 1-7.

 Overview of OPC, Servers, and the Toolbox

1-5

Get Command-Line Function Help
To get command-line function help, use the MATLAB help function. For example, to get help for the
opcserverinfo function, type

help opcserverinfo

To get help on a particular OPC HDA function, use the opchda prefix. For example to get help on the
HDA equivalent of the opcserverinfo function, type

help opchdaserverinfo

Industrial Communication Toolbox software also provides its own versions of several MATLAB
functions, using the same function names. For example, the toolbox provides a version of the
isvalid function. When you type

help isvalid

you get help for the MATLAB handle object version of this function. If there are multiple versions of a
function available, the help indicates this. For isvalid, the help contains this line:

Other functions named isvalid

If necessary, click that link to view the function list. You might see a listing like this.
Other functions named isvalid:
 handle/isvalid, timer/isvalid, serial/isvalid, instrument/isvalid,
 imaqdevice/isvalid, imaqchild/isvalid, vrworld/isvalid,
 vrnode/isvalid, vrfigure/isvalid, daqdevice/isvalid,
 daqchild/isvalid, icgroup/isvalid, xregpointer/isvalid,
 idnlgrey/isvalid, iconnect/isvalid, opcroot/isvalid.

To get help on the Industrial Communication Toolbox version of this function, click the appropriate
link, or type

help opcroot/isvalid

To avoid specifying which version to view, use the opchelp function.

opchelp isvalid

You can also use opchelp to get help on OPC object properties.

opchelp EventLog

1 Introduction

1-6

Set Up Industrial Communication Toolbox Software for OPC

In this section...
“Preparation Overview” on page 1-7
“Set Up for Communicating with OPC DA and OPC HDA Servers” on page 1-7
“Install an OPC DA or HDA Simulation Server for OPC Classic Examples” on page 1-14
“Set Up for Communicating with OPC UA Servers” on page 1-15
“Install an OPC UA Simulation Server for OPC UA Examples” on page 1-15
“(Optional) Install a Local Discovery Service for OPC UA Server Discovery Examples” on page 1-15

Preparation Overview
Before you can communicate with OPC servers on your network, you need to prepare your
workstation (and possibly the OPC server host computer) to use the technologies on which Industrial
Communication Toolbox software is built. These technologies, described in “About OPC” on page 1-4,
allow you to browse for and connect to OPC servers on your network, and allow those OPC servers to
interact with your MATLAB session using Industrial Communication Toolbox OPC software.

The specific steps are described in the following sections.

Set Up for Communicating with OPC DA and OPC HDA Servers
Install the OPC Foundation Core Components

OPC DA and HDA use the “OPC Classic” technologies, which employ Microsoft DCOM standards.
DCOM is used for client-server communication, and for managing security of the connections through
standard Microsoft security permissions on DCOM objects. To use OPC Classic capabilities, you must
configure your computer and possibly the server computer to allow for this communication.

The OPC Foundation provides a set of tools for browsing other computers on your network for OPC
servers, and for communicating with the OPC servers. These tools are called the OPC Foundation
Core Components, and are shipped with Industrial Communication Toolbox software.

To install the OPC Foundation Core Components, use the opcregister function. You can also use
the opcregister function to remove or repair the OPC Foundation Core Components installation.

Installing, repairing, and removing the OPC Foundation Core Components follows the same steps:

1 If you are repairing or removing the OPC Foundation Core Components, make sure that you do
not have any OPC objects in memory. Use the opcreset function to clear all objects from
memory.

opcreset;
2 Run opcregister with the action you would like to perform. If you do not supply an option, the

function assumes that you want to install the components. Otherwise, use 'repair' to repair an
installation (reinstall the files), or 'remove' to remove the components.

opcregister('install')

 Set Up Industrial Communication Toolbox Software for OPC

1-7

3 You will be prompted to type Yes to confirm the action you want to perform. You must type Yes
exactly as shown, without any quotes. This confirmation question is used to ensure that you
acknowledge the action that is about to take place.

4 The OPC Foundation Core Components will be installed, repaired, or removed from your system.
5 If you receive a warning about having to reboot your computer, you must quit MATLAB and

restart your computer for the changes to take effect.

Configure DCOM

DCOM is a client-server based architecture for enabling communication between two applications
running on distributed computers. The OPC DA and HDA specifications utilize DCOM for
communication between the OPC client (for example, Industrial Communication Toolbox software)
and the OPC server. To successfully use DCOM, those two computers must share a common security
configuration so that the two applications are granted the necessary rights to communicate with each
other.

To connect successfully to OPC Servers using Industrial Communication Toolbox, you must configure
DCOM permissions between the client computer (on which MATLAB is installed) and the server
computer (running the OPC Server). This section describes two typical DCOM configuration options
for Industrial Communication Toolbox software. Other DCOM options might provide sufficient
permissions for the toolbox to work with an OPC server; the options described here are known to
work with tested vendors’ OPC servers.

There are two configuration types described in this section:

• “Configure DCOM to Use Named User Security” on page 1-9 describes how to provide security
between the client and server negotiated on a dedicated named user basis. You do not have to be
logged in as the named user in order to use this mechanism; all communications between the
client and the server are performed using the dedicated named user, independently of the user
making the OPC requests. However, the identity used to run the OPC server must be available on
the client machine, and the password of that identity must match on both machines.

• “Configure DCOM to Use No Security” on page 1-13 describes a configuration that provides no
security between the client and server. Use this option only if you are connecting to an OPC server
on a dedicated, private network. This configuration option has been known to cause some
Microsoft Windows® services to fail, and to leave the computer vulnerable to malicious intrusion
from other network users.

You should use the named user configuration, unless your system administrator indicates that no
security is required for OPC access.

Caution If your OPC server software comes with DCOM setup guidelines, you should first attempt to
follow the instructions provided by the OPC server vendor. The guidelines provided in this section are
generic and may not suit your specific network and security model.

Note The following instructions apply to the Microsoft Windows 7 operating system with Service
Pack 1. Users of other Microsoft Windows operating systems should be able to adapt these
instructions to configure DCOM on their systems.

1 Introduction

1-8

Configure DCOM to Use Named User Security

To configure DCOM to use named user security, you will have to ensure that both the server machine
and client machine have a common user who is granted DCOM access rights on both the server and
client machines. You should consult the following sections for information on configuring each
machine:

• “OPC Server Machine Configuration” on page 1-9 provides the steps that you must perform on
each of the machines providing OPC servers.

• “Client Machine Configuration” on page 1-10 provides the steps that you must perform on the
machine that will run MATLAB and Industrial Communication Toolbox software.

OPC Server Machine Configuration

On the machines hosting the OPC servers, perform the following steps:

1 Create a new local user. (You can also create a domain user if the server and client machines are
part of the same domain.) The name used in these instructions is opc (displayed as OPC Server
in dialogs boxes), but you can choose any name, as long as you remain consistent throughout
these instructions.

2 Select Start > Control Panel. Double-click Administrative Tools and then double-click
Component Services. The Component Services dialog appears.

3 Browse to Component Services > Computers > My Computer > DCOM Config.
4 Locate your OPC server in the DCOM Config list. The example below shows the Matrikon™ OPC

Server for Simulation.

5 Right-click the OPC server object, and choose Properties.
6 In the General tab, ensure that the Authentication Level is set to Default or to Connect.

 Set Up Industrial Communication Toolbox Software for OPC

1-9

7 In the Security tab, choose Customize for the Launch and Activation Permissions, then click
Edit. Ensure that the opc user is granted local Launch and Activation permissions.

Click OK to dismiss the Local Launch and Activation Permissions dialog box.
8 In the Security tab, choose Customize for the Access Permissions, then click Edit. Ensure that

the opc user is granted Local Access permissions.

Click OK to dismiss the Local Launch and Activation Permissions dialog box.
9 In the Identity tab, select This user and type the name and password for the opc user (created

in step 1).

10 If the OPC server runs as a service, make sure that the service runs as the opc user (created in
step 1) and not as the system account. Consult your system administrator for information on how
to configure a service to run as a specific user.

11 Repeat steps 4 through 10 for each of the servers you want to connect to.

Client Machine Configuration

On the machine(s) that will be running MATLAB and Industrial Communication Toolbox software,
perform the following steps:

1 On the client machine(s), create the identical local user with the same name and password
permissions as you set up in step 1 of “OPC Server Machine Configuration” on page 1-9.

2 Select Start > Control Panel. Double-click Administrative Tools and then double-click
Component Services. The Component Services dialog appears.

1 Introduction

1-10

3 Browse to Component Services > Computers > My Computer. Right-click My Computer
and select Properties.

4 Click the Default Properties tab, and ensure that:

• Enable Distributed COM is checked
• Default Authentication Level is set to Connect
• Default Impersonation Level is set to Identify

5 Click the COM Security tab.

 Set Up Industrial Communication Toolbox Software for OPC

1-11

6 For the Access Permissions, click Edit Default and ensure that the opc user is included in the
Default Security list, and is granted both Local Access and Remote Access permissions.

Click OK to close the Default Access Permissions dialog box.
7 Still under Access Permission", click Edit Limits and ensure that the opc user is included in the

Security Limits list, and is granted both Local Access and Remote Access permissions.

Click OK to close the Security Limits dialog box.
8 For the Launch and Activation permissions, click Edit Default and ensure that the opc user is

included in the Default Security list, and is granted all rights (Local Launch, Remote Launch,
Local Activation, and Remote Activation).

Click OK to close the Default Access Permissions dialog box.
9 Still under Launch and Activation Permission, click Edit Limits and ensure that the opc user is

included in the Security Limits list, and is granted all rights (Local Launch, Remote Launch,
Local Activation, and Remote Activation).

Click OK to close the Security Limits dialog.
10 Click OK. A dialog warns you that you are modifying machine-wide DCOM settings.

Click Yes to accept the changes.

1 Introduction

1-12

Your local client machine and server applications are now configured to use the same username when
the server attempts to establish a connection back to the client.

Configure DCOM to Use No Security

Caution You should not use this option if you are not in a completely trusted network. Turning off
DCOM security means that any user on the network can launch any COM object on your local
machine. Consult your network administrator before following these instructions.

You must complete the following steps on both the client and server machines.

1 Ensure that the Guest user account is enabled. (The Guest account is disabled by default on
Windows 7 machines). Consult your system administrator for information on how to enable the
Guest account.

2 Select Start > Control Panel. Double-click Administrative Tools and then double-click
Component Services. The Component Services dialog appears.

3 Browse to Component Services > Computers > My Computer. Right-click My Computer
and select Properties.

4 In the Default Properties tab, make sure that Enable Distributed COM On This Computer is
selected. Select None as the Default Authentication Level, and Anonymous as the Default
Impersonation Level.

 Set Up Industrial Communication Toolbox Software for OPC

1-13

5 In the COM Security tab, select Edit Limits from the Access Permissions and ensure that
Everyone and ANONYMOUS LOGON are both granted Local Access and Remote Access.

6 In the COM Security tab, select Edit Limits from the Launch and Activation Permissions and
ensure that Everyone and ANONYMOUS LOGON are both granted Local and Remote permissions
(Local Launch, Remote Launch, Local Activation and Remote Activation).

Both the client and the server are now configured so that anybody can access any COM object on
either machine.

Caution This configuration is potentially dangerous in terms of security, and is recommended for
debugging purposes only.

Install an OPC DA or HDA Simulation Server for OPC Classic Examples
OPC DA and OPC HDA (together, called “OPC Classic”) examples in this guide and in the Industrial
Communication Toolbox online help make use of a Matrikon OPC Simulation Server that you can
download free of charge from https://www.matrikonopc.com.

1 Introduction

1-14

https://www.matrikonopc.com

Note You do not need to install the Matrikon OPC Simulation Server to enable the OPC functionality
of Industrial Communication Toolbox. The Simulation Server is used here only for showing examples
of the capabilities and syntax of OPC commands, and for providing fully working examples.

To install the Matrikon OPC Simulation Server, follow the installation instructions with the software.
The Industrial Communication Toolbox documentation and OPC examples assume a default
installation of the Matrikon Simulation Server.

Set Up for Communicating with OPC UA Servers
Allow OPC UA Communication Through Firewalls

OPC UA communication takes place using various TCP/IP ports. To locate OPC UA servers on other
hosts, Industrial Communication Toolbox uses the OPC UA Local Discovery Service for that host,
which is hosted on port 4840. Every other OPC UA server on a host uses a different port for
communication. Locally, Industrial Communication Toolbox uses a random local port number to
initiate the connection.

If you have a local firewall, you must ensure that the firewall allows MATLAB to communicate
through the firewall. All other firewalls between the Industrial Communication Toolbox software and
the OPC UA servers must permit communication on port 4840 plus all other ports set up by your OPC
server administrator for the OPC UA servers you want to connect to.

Install an OPC UA Simulation Server for OPC UA Examples
OPC UA examples in this documentation make use of a Prosys OPC UA Simulation Server that you
can download free of charge from https://www.prosysopc.com/products/opc-ua-simulation-server/.

To install the Prosys OPC UA Simulation Server, follow the installation instructions with the software.
When you have started the server, you might want to reduce the number of ports used by the server
by turning off HTTPS endpoints in the Endpoints tab of the Prosys OPC UA Simulation Server tool.

(Optional) Install a Local Discovery Service for OPC UA Server
Discovery Examples
If you want to explore the OPC UA server discovery examples, you must install the OPC UA Local
Discovery Service (LDS) and register your Simulation Server with the LDS. A free LDS installer is
maintained by the OPC Foundation.

Download the Local Discovery Service

Download the LDS installer from https://opcfoundation.org/developer-tools/samples-and-tools-unified-
architecture/local-discovery-server-lds/

The download is free, although you must create an OPC Foundation website account to access
downloads.

Run the installer, which automatically registers the LDS on your computer. The LDS always uses port
4840 for communication.

 Set Up Industrial Communication Toolbox Software for OPC

1-15

https://www.prosysopc.com/products/opc-ua-simulation-server/
https://opcfoundation.org/developer-tools/samples-and-tools-unified-architecture/local-discovery-server-lds/
https://opcfoundation.org/developer-tools/samples-and-tools-unified-architecture/local-discovery-server-lds/

Register the Simulation Server with the Local Discovery Service

The LDS requires a secure connection to OPC UA servers to allow those servers to register
successfully with the LDS. This requires an Application Instance certificate to be trusted by the LDS.
To allow the Prosys OPC UA Simulation Server to register with the OPC Foundation LDS, follow these
steps.

1 Run the Prosys OPC UA Simulation Server.
2 Select Options > Switch to Expert Mode.
3 In the Endpoints tab, Register to pane, check the option Local Discovery Server.
4 In the Certificates tab, select the SimulationServer node and click Open in File Explorer.
5 Copy all files in the folder to C:\ProgramData\OPC Foundation\UA\Discovery\pki

\trusted\certs.
6 Restart the Prosys OPC UA Simulation Server.
7 In the MATLAB Command Window, discover OPC UA servers published by the LDS. You should

see an entry named SimulationServer.

s = opcuaserverinfo('localhost')

s =

OPC UA ServerInfo 'SimulationServer':

 Connection Information
 Hostname: 'opc-demo1.my.local'
 Port: 53530

8 Create an OPC UA client, and connect in to the simulation server in MATLAB:

opcua(s);
connect(s)

Depending on the server configuration, you might see an error on your initial attempt to connect:

Error using opc.ua.Client/Connect
An error occurred verifying security

To correct this, you must manually mark the certificate as trusted on the server side:

a Open the Prosys OPC UA Simulation Server tool.
b Select Options > Switch to Expert Mode.
c In the Certificates tab, right-click the MATLAB OPC Toolbox entry, and select Trusted.

Now you can connect.

1 Introduction

1-16

Troubleshooting OPC Issues

In this section...
“Unable to Find an OPC Server” on page 1-17
““Class not registered” Error” on page 1-17
“Unable to Query the Server” on page 1-17
“Unable to Connect to Server” on page 1-17
“Unable to Create a Group” on page 1-18
“Error While Querying Interface” on page 1-18

If you are unable to establish a connection to an OPC server, the following sections might help you to
identify and solve problems with installation and configuration that could be preventing you from
successfully querying and connecting to OPC servers.

Most problems with connecting to an OPC server relate to the DCOM settings on either the host or
the client machine. For information on configuring DCOM, see “Configure DCOM” on page 1-8.

Unable to Find an OPC Server
First, check that you are able to communicate with the host from your client. You can test this by
attempting to run a Command Prompt and using the 'ping' command on the host. Alternatively, try
to browse to the host using the Network Neighborhood.

If you are able to communicate with the host, but you are unable to find an OPC server (using the
opcserverinfo command) on that host, then the OPC Foundation Core Components may have to be
reinstalled on your workstation. You can run the opcregister function to repair your OPC
Foundation Core Components installation. For more information see “Install the OPC Foundation
Core Components” on page 1-7.

“Class not registered” Error
If you get this error while attempting to query a server using opcserverinfo, or when attempting
to add a host in the OPC Data Access Explorer app, the OPC Foundation Core Components have not
been installed correctly. Install the OPC Foundation Core Components, as described in “Install the
OPC Foundation Core Components” on page 1-7.

Unable to Query the Server
If you are unable to query the server using opcserverinfo, the most common cause is incorrectly
configured local DCOM security settings. Review the section on “Configure DCOM” on page 1-8.

Unable to Connect to Server
An inability to connect to the OPC server usually indicates that the security model on the server is not
allowing you to make an initial connection. Check the DCOM configuration on the server, and review
the section on “Configure DCOM” on page 1-8.

 Troubleshooting OPC Issues

1-17

Unable to Create a Group
If you are able to connect to the server but cannot create a group, the most common cause is
incorrectly configured local DCOM security settings. Review the section on “Configure DCOM” on
page 1-8.

Error While Querying Interface
If you get this error while attempting to add a group to a connected client object,

Error occurred while querying interface: IID_IOPCDataCallback

your local DCOM security settings are not permitting the OPC server to connect to the Industrial
Communication Toolbox OPC client on the local machine. Review the section on “Configure DCOM”
on page 1-8.

1 Introduction

1-18

Quick Start: Using OPC Data Access
Functions

The best way to learn about Industrial Communication Toolbox OPC capabilities is to look at a simple
example. This topic illustrates the basic steps required to log data from an OPC Data Access (DA)
server for analysis and visualization.

Cross-references to other sections in the documentation provide more in-depth discussions of the
relevant concepts.

2

Access Data at the Command Line
In this section...
“DA Programming Overview” on page 2-2
“Step 1: Locate Your OPC Data Access Server” on page 2-2
“Step 2: Create an OPC Data Access Client Object” on page 2-3
“Step 3: Connect to the OPC Data Access Server” on page 2-3
“Step 4: Create an OPC Data Access Group Object” on page 2-4
“Step 5: Browse the Server Name Space” on page 2-4
“Step 6: Add OPC Data Access Items to the Group” on page 2-5
“Step 7: View All Item Values” on page 2-6
“Step 8: Configure Group Properties for Logging” on page 2-6
“Step 9: Log OPC Server Data” on page 2-7
“Step 10: Plot the Data” on page 2-7
“Step 11: Clean Up” on page 2-7

DA Programming Overview
This section illustrates the basic steps to create an OPC Data Access application by visualizing the
Triangle Wave and Saw-toothed Wave signals provided by the Matrikon OPC Simulation Server. The
application logs data to memory and plots that data, highlighting uncertain or bad data points. By
visualizing the data you can more clearly see the relationships between the signals.

Note To run the sample code in the following steps you need the Matrikon OPC Simulation Server on
your local machine. For installation details, see “Install an OPC DA or HDA Simulation Server for OPC
Classic Examples” on page 1-14. The code requires only minor changes to work with other servers.

Step 1: Locate Your OPC Data Access Server
In this step, you obtain two pieces of information that the toolbox needs to uniquely identify the OPC
Data Access server that you want to connect to. You use this information when creating an OPC Data
Access Client object (opcda client object), described in “Step 2: Create an OPC Data Access Client
Object” on page 2-3.

The first piece of information is the host name of the server computer. The host name (a descriptive
name like "PlantServer" or an IP address such as 192.168.16.32) qualifies that computer on the
network, and is used by the OPC Data Access protocols to determine the available OPC servers on
that computer, and to communicate with the computer to establish a connection to the server. In any
OPC application, you must know the name of the OPC server's host, so that a connection with that
host can be established. Your network administrator can provide a list of host names that provide
OPC servers on your network. In this example, you will use localhost as the host name, because
you will connect to the OPC server on the same machine as the client.

The second piece of information is the OPC server's server ID. Each OPC server on a particular host
is identified by a unique server ID (also called the Program ID or ProgID), which is allocated to that
server on installation. The server ID is a text character vector, usually containing periods.

2 Quick Start: Using OPC Data Access Functions

2-2

Although your network administrator can provide a list of server IDs for a particular host, you can
query the host for all available OPC servers. “Discover Available Data Access Servers” on page 5-2
discusses how to query hosts from the command line.

Use the opcserverinfo function to make a query from the command line.

hostInfo = opcserverinfo('localhost')

hostInfo =
 Host: 'localhost'
 ServerID: {1x3 cell}
 ServerDescription: {1x3 cell}
 OPCSpecification: {'DA2' 'DA2' 'DA2'}
 ObjectConstructor: {1x3 cell}

Examining the returned structure in more detail provides the server IDs of each OPC server.

allServers = hostInfo.ServerID'

allServers =
 'Matrikon.OPC.Simulation.1'
 'ICONICS.Simulator.1'
 'Softing.OPCToolboxDemo_ServerDA.1'

Step 2: Create an OPC Data Access Client Object
After determining the host name and server ID of the OPC server to connect to, you can create an
opcda client object. The client controls the connection status to the server, and stores any events that
occur from that server (such as notification of data changing state, which is called a data change
event) in the event log. The opcda client object also contains any Data Access Group objects that you
create on the client. For details on the OPC object hierarchy, see “Toolbox Object Hierarchy for the
Data Access Standard” on page 6-2.

Use the opcda function to specify the host name and Server ID.

da = opcda('localhost','Matrikon.OPC.Simulation.1')

da =
 OPC Data Access Object: localhost/Matrikon.OPC.Simulation.1
 Server Parameters
 Host: localhost
 ServerID: Matrikon.OPC.Simulation.1
 Status: disconnected
 Object Parameters
 Group: 0-by-1 dagroup object

For details on creating clients, see “Create OPC Data Access Objects” on page 6-2.

Step 3: Connect to the OPC Data Access Server
OPC Data Access Client objects are not automatically connected to the server when they are created.
This allows you to fully configure an OPC object hierarchy (a client with groups and items) before
connecting to the server, or without a server even being present.

Use the connect function to connect an opcda client object to the server at the command line.

 Access Data at the Command Line

2-3

connect(da)

Step 4: Create an OPC Data Access Group Object
You create Data Access Group objects (dagroup objects) to control and contain a collection of Data
Access Item objects (daitem objects). A dagroup object controls how often the server must notify
you of any changes in the item values, controls the activation status of the items in that group, and
defines, starts, and stops logging tasks.

On their own, dagroup objects are not useful. Once you add items to a group, you can control those
items, read values from the server for all the items in a group, and log data for those items, using the
dagroup object. In Step 5 you browse the OPC server for available tags. Step 6 involves adding the
items associated with those tags to the dagroup object.

Use the addgroup function to create dagroup objects from the command line. This example adds a
group to the opcda client object already created.

grp = addgroup(da)

grp =
 OPC Group Object: Group0
 Object Parameters
 GroupType: private
 Item: 0-by-1 daitem object
 Parent: localhost/Matrikon.OPC.Simulation.1
 UpdateRate: 0.5
 DeadbandPercent: 0
 Object Status
 Active: on
 Subscription: on
 Logging: off
 LoggingMode: memory

See “Create Data Access Group Objects” on page 6-4 for more information on creating group
objects from the command line.

Step 5: Browse the Server Name Space
All OPC servers provide access to server items via a server name space. The name space is an
ordered list of the server items, usually arranged in a hierarchical format for easy access. A server
item (also known as a tag) is a measurement or data point on a server, providing information from a
device (such as a pressure sensor) or from another software package that supplies data through OPC
Data Access (such as a SCADA package).

Note If you know the item IDs of the server items you are interested in, you can skip this section and
go directly to “Step 6: Add OPC Data Access Items to the Group” on page 2-5. In this example,
assume that you do not know the exact item IDs, although you do know that you want to log
information from the Saw-toothed Waves and Triangular Waves provided by the Matrikon Simulation
Server.

From the command line, you can “browse” the server name space using the serveritems function.
You need to supply a connected opcda client object to the serveritems function, and an optional

2 Quick Start: Using OPC Data Access Functions

2-4

character vector argument to limit the returned results. The character vector can contain wildcard
characters (*). An example of using serveritems is as follows.

sawtoothItems = serveritems(da,'*Saw*')

sawtoothItems =
 'Saw-toothed Waves.'
 'Saw-toothed Waves.Int1'
 'Saw-toothed Waves.Int2'
 'Saw-toothed Waves.Int4'
 'Saw-toothed Waves.Money'
 'Saw-toothed Waves.Real4'
 'Saw-toothed Waves.Real8'
 'Saw-toothed Waves.UInt1'
 'Saw-toothed Waves.UInt2'
 'Saw-toothed Waves.UInt4'

The command for obtaining the server item properties is serveritemprops. See the
serveritemprops reference page for details.

Step 6: Add OPC Data Access Items to the Group
Now that you have found the server items in the name space, you can add Data Access Item objects
(daitem object) for those tags to the dagroup object you created in Step 4. A daitem object is a link
to a tag in the name space, providing the tag value, and additional information on that item, such as
the Canonical Data Type.

Reading a Value from the Server

A daitem object initially contains no information about the server item that it represents. The
daitem object only updates when the server notifies the client of a change in status for that item (the
notification is called a data change event) or the client specifically reads a value from the server.

Each time you read or obtain data from the server through a data change event, the server provides
you with updated Value, Quality, and Timestamp values.

Adding More Items to the Group

Use the additem function to add items to a dagroup object. You need to pass the dagroup object to
which the items will be added, and the fully qualified item ID as a character vector. The item IDs were
found using the serveritems function in Step 5.

itm1 = additem(grp,'Saw-toothed Waves.Real8')

itm1 =
 OPC Item Object: Saw-toothed Waves.Real8
 Object Parameters
 Parent: Group0
 AccessRights: read/write
 DataType: double
 Object Status
 Active: on
 Data:
 Value:
 Quality:
 Timestamp:

 Access Data at the Command Line

2-5

You can add multiple items to the group in one additem call, by specifying multiple ItemID values in
a cell array.

itms = additem(grp,{'Triangle Waves.Real8', ...
 'Triangle Waves.UInt2'})

itms =
 OPC Item Object Array:
 Index: DataType: Active: ItemID:
 1 double on Triangle Waves.Real8
 2 uint16 on Triangle Waves.UInt2

For details on adding items to groups, see “Create Data Access Item Objects” on page 6-6.

Step 7: View All Item Values
The group object lets you read and write values from all items in the group, and log data to memory
and/or disk.

The Value, Quality, and Timestamp values of items continually update as long as you have
Subscription enabled. Subscription controls whether data change events are sent by the OPC server
to the toolbox, for items whose values change. UpdateRate and DeadbandPercent define how often
the items must be queried for a new value, and whether all value changes or only changes of a
specified magnitude are sent to the toolbox. For details on Subscription, see “Data Change Events
and Subscription” on page 7-8.

By observing the data for a while, you will see that the three signals appear to have similar ranges.
This indicates that you can visualize the data in the same axes when you plot it in Step 10.

In Step 9 you will configure a logging task and log data for the three items.

Use the read function with a group object as the first parameter to read values from all items in a
group. The read function is discussed in detail in “Read and Write Data on OPC DA Server” on page
7-2.

Step 8: Configure Group Properties for Logging
Now that your dagroup object contains items, use the group to control the interaction of those items
with the server. In this step, configure the group to log data from those items for 2 minutes at 0.2-
second intervals. You can use the logged data in Step 9 to visualize the signals produced by the
Matrikon Simulation Server.

OPC Data Access Servers provide access only to “live” data (the last known value of each server item
in their name space). In many cases, a single value of a signal is not useful, and a time series
containing the signal value over a period of time is helpful in analyzing that signal or signal set.
Industrial Communication Toolbox allows you to log all OPC DA items in a group to disk or memory,
and to retrieve that data for analysis in MATLAB.

You configure a logging session using the dagroup object. By modifying the properties associated
with logging, you control how often the data must be sent from the server to the client, how many
records the group must log, and where to log the data.

Use the set function to set OPC object properties. From the command line you can calculate the
number of records required for the logging task.

2 Quick Start: Using OPC Data Access Functions

2-6

logDuration = 2*60;
logRate = 0.2;
numRecords = ceil(logDuration./logRate);
grp.UpdateRate = logRate;
grp.RecordsToAcquire = numRecords;

Step 9: Log OPC Server Data
Now that you configured the dagroup object's logging properties, your object can log the required
amount of data to memory.

Use the start function with the required dagroup object to start a logging task.

start(grp)

The logging task occurs in the background. You can continue working in MATLAB while a logging
task is in operation. The logging task is unaffected by other computations occurring in MATLAB, and
MATLAB processing is not blocked by the logging task. You can instruct MATLAB to wait for the
logging task to complete, using the wait function.

wait(grp)

Step 10: Plot the Data
After logging finishes, transfer data from the toolbox engine to the MATLAB workspace using the
getdata function, which provides two types of output, depending on its 'datatype' argument. For
details, see the getdata reference page. In this case you retrieve the data into separate arrays, and
plot the data.

This example produces the figure:

[logIDs, logVal, logQual, logTime, logEvtTime] = ...
 getdata(grp,'double');
plot(logTime,logVal)
axis tight
datetick('x','keeplimits')
legend(logIDs)

Notice how the three signals seem almost completely unrelated, except for the period of the two
Real8 signals. The peak values for each signal are different, as are the periods for the two Triangle
Waves signals. By visualizing the data, you can gain some insight into the way the Matrikon OPC
Simulation Server simulates each tag. In this case, it is apparent that Real8 and UInt2 signals have
a different period.

Step 11: Clean Up
After finishing an OPC task, you should remove the task objects from memory and clear the MATLAB
workspace of the variables associated with these objects.

When using OPC objects at the MATLAB command line or from your own functions, you must remove
them from the toolbox engine using the delete function. Note that when you delete a toolbox object,
the children of that object are automatically removed from the toolbox engine. In this example, there
is no need to delete grp and itm, as they are children of da.

 Access Data at the Command Line

2-7

disconnect(da)
delete(da)
clear da grp itm
close(gcf)

OPC object management is discussed in detail in “Delete Objects” on page 6-18.

2 Quick Start: Using OPC Data Access Functions

2-8

Quick Start: Using the OPC Data Access
Explorer

The best way to learn about the OPC capabilities in Industrial Communication Toolbox is to look at a
simple example. This topic shows the basic steps required to log data from an OPC data access server
for analysis and visualization. The example uses the OPC Data Access Explorer app provided in the
toolbox, to show the process, and includes information on how to achieve the same results from the
command line.

This topic contains cross-references to other sections in the documentation that provide more in-
depth discussions of the relevant concepts.

3

Access Data with the OPC Data Access Explorer
In this section...
“Procedure Overview” on page 3-2
“Step 1: Open the OPC Data Access Explorer” on page 3-2
“Step 2: Locate Your OPC Server” on page 3-3
“Step 3: Create an OPC Data Access Client Object” on page 3-5
“Step 4: Connect to the OPC Server” on page 3-7
“Step 5: Create an OPC Data Access Group Object” on page 3-8
“Step 6: Browse the Server Name Space” on page 3-10
“Step 7: Add OPC Data Access Items to the Group” on page 3-12
“Step 8: View All Item Values” on page 3-14
“Step 9: Configure Group Properties for Logging” on page 3-15
“Step 10: Log OPC Server Data” on page 3-17
“Step 11: Plot the Data” on page 3-17
“Step 12: Clean Up” on page 3-19

Procedure Overview
This section illustrates the basic steps required to create an OPC Data Access application by
visualizing the Triangle Wave and Saw-toothed Wave signals provided with the Matrikon OPC
Simulation Server. The application logs data to memory and plots that data, highlighting uncertain or
bad data points. By visualizing the data you can more clearly see the relationships between the
signals.

Note To run the sample code in the following examples, you must have the Matrikon OPC Simulation
Server available on your local machine. For information on installing this, see “Install an OPC DA or
HDA Simulation Server for OPC Classic Examples” on page 1-14. The code requires only minor
changes to work with other servers.

The example in this topic uses the OPC Data Access Explorer app. In addition, each step contains
information on how to complete that step using command-line code. The entire example is contained
in the example file opcdemo_quickstart.

Step 1: Open the OPC Data Access Explorer
Double-click the OPC Data Access Explorer in the Apps menu. The app opens with no hosts,
servers, or toolbox objects created. The following figure shows the main components of the OPC
Data Access Explorer.

3 Quick Start: Using the OPC Data Access Explorer

3-2

In the following steps, you will fill each of the panes with information required to log data, and you
will log the data, by creating and interacting with OPC objects.

Command-Line Equivalent

To open the OPC Data Access Explorer from the command line, type opcDataAccessExplorer at
the MATLAB prompt.

Step 2: Locate Your OPC Server
In this step, you obtain two pieces of information that the toolbox needs to uniquely identify the OPC
server that you want to access. You use this information when you create an OPC Data Access Client
object (opcda client object), described in “Step 3: Create an OPC Data Access Client Object” on page
3-5.

The first piece of information that you require is the hostname of the server computer. The hostname
(a descriptive name like PlantServer or an IP address such as 192.168.16.32) qualifies that
computer on the network, and is used by the OPC Data Access protocols to determine the available
OPC servers on that computer, and to communicate with the computer to establish a connection to
the server. In any OPC application, you must know the name of the OPC server’s host, so that a
connection with that host can be established. Your network administrator will be able to provide you
with a list of hostnames that provide OPC servers on your network. In this example, you will use
localhost as the hostname, because you will connect to the OPC server on the same machine as the
client.

The second piece of information that you require is the OPC server’s server ID. Each OPC server on a
particular host is identified by a unique server ID (also called the Program ID or ProgID), which is
allocated to that server on installation. The server ID is a character vector, usually containing periods.

 Access Data with the OPC Data Access Explorer

3-3

Although your network administrator will be able to provide you with a list of server IDs for a
particular host, you can query the host for all available OPC servers. “Discover Available Data Access
Servers” on page 5-2 discusses how to query hosts from the command line.

Using the OPC Data Access Explorer you can browse a host using the following steps:

1 In the Hosts and OPC Servers pane, click the Add host icon to open the Host name dialog,
shown below.

2 In the Host name dialog, enter the name of the host. In this case, you can use the "localhost"
alias.

localhost

Click OK. The hostname will be added to the OPC Network tree view, and the OPC servers
installed on that host will automatically be found and added to the tree view. Your Hosts and
OPC Servers pane should look similar to the one shown below.

Note that the local host in this example provides three OPC servers. The Server ID for this
example is 'Matrikon.OPC.Simulation.1'.

Command-Line Equivalent

The command-line equivalent for this step uses the function opcserverinfo.

hostInfo = opcserverinfo('localhost')

hostInfo =
 Host: 'localhost'
 ServerID: {1x3 cell}

3 Quick Start: Using the OPC Data Access Explorer

3-4

 ServerDescription: {1x3 cell}
 OPCSpecification: {'DA2' 'DA2' 'DA2'}
 ObjectConstructor: {1x3 cell}

Examining the returned structure in more detail provides the server IDs of each OPC server.

allServers = hostInfo.ServerID'

allServers =
 'Matrikon.OPC.Simulation.1'
 'ICONICS.Simulator.1'
 'Softing.OPCToolboxDemo_ServerDA.1'

Step 3: Create an OPC Data Access Client Object
Once you have determined the hostname and server ID of the OPC server you want to connect to, you
can create an opcda client object. The client controls the connection status to the server, and stores
any events that take place from that server (such as notification of data changing state, which is
called a data change event) in the event log. The opcda client object also contains any Data Access
Group objects that you create on the client. For more information on the OPC object hierarchy, see
“Toolbox Object Hierarchy for the Data Access Standard” on page 6-2.

With the OPC Data Access Explorer, you can create a client directly from the Hosts and OPC
Servers pane.

Right-click the Matrikon server node and choose Create client. A client will be created in the OPC
Toolbox Objects pane, as shown in the following figure.

The name of the client (displayed in the OPC Toolbox Objects pane) is Host/ServerID, where
Host is the hostname and ServerID is the Server ID associated with that client. In this example, the
client’s name is 'localhost/Matrikon.OPC.Simulation.1'

Once you have created the client, you can view the properties of the client object in the Object
Properties pane, as shown in the next figure.

 Access Data with the OPC Data Access Explorer

3-5

Alternative Methods for Creating Clients

You can create a client in the OPC Data Access Explorer by using any of the following methods:

• Select the MATLAB OPC Clients node in the OPC Toolbox Objects pane and click Add Client
in the OPC Toolbox Objects toolbar.

• Choose Add from the Client menu.
• Right-click the MATLAB OPC Clients node in the OPC Toolbox Objects tree and select Create

Client.

If you select one of these methods, a dialog appears requesting the hostname and server ID.

When you supply a hostname, you will be able to select the Server ID from a list, by clicking Select.
Using the Add client dialog, you can also automatically attempt to connect to the server when the
client is created, by checking Connect after creating OPC Client before clicking OK.

Command-Line Equivalent

The command-line equivalent of this step involves using the opcda function, specifying the hostname
and Server ID arguments.

da = opcda('localhost', 'Matrikon.OPC.Simulation.1')

3 Quick Start: Using the OPC Data Access Explorer

3-6

da =
 OPC Data Access Object: localhost/Matrikon.OPC.Simulation.1
 Server Parameters
 Host: localhost
 ServerID: Matrikon.OPC.Simulation.1
 Status: disconnected
 Object Parameters
 Group: 0-by-1 dagroup object

For more information on creating clients, see “Create OPC Data Access Objects” on page 6-2.

Step 4: Connect to the OPC Server
OPC Data Access Client objects are not automatically connected to the server when they are created.
This allows you to fully configure an OPC object hierarchy (a client with groups and items) prior to
connecting to the server, or without a server even being present.

Note The Add Client dialog described in “Alternative Methods for Creating Clients” on page 3-6 can
connect the client to the server after creating the client object.

To connect the client to the server, you can use the OPC Toolbox Objects toolbar, shown in the
following figure.

Click Connect in the OPC Toolbox Objects toolbar. If the client is able to connect to the server, the
icon for that client in the OPC Toolbox Objects tree will change to show that the client is connected.
If the client could not connect to the server, an error dialog will show any error message returned.
See “Troubleshooting OPC Issues” on page 1-17 for information on why a client may not be able to
connect to a server.

When you connect an opcda client object to the server associated with that client, the server node in
the Hosts and OPC Servers pane also updates to show that the server has a connection to a client in
the app. With that connection, the properties of the server are displayed in the Hosts and OPC
Servers pane. For this example, a typical view of the app after connecting to a client is shown in the
next figure.

 Access Data with the OPC Data Access Explorer

3-7

The OPC server properties include diagnostic information, such as the supported OPC Data Access
interfaces, the time the server was started, and the current server status.

Command-Line Equivalent

You use the connect function to connect an opcda client object to the server at the command line.

connect(da)

Step 5: Create an OPC Data Access Group Object
You create Data Access Group objects (dagroup objects) to control and contain a collection of Data
Access Item objects (daitem objects). A dagroup object controls how often the server must notify
you of any changes in the item values, control the activation status of the items in that group, and
define, start, and stop logging tasks.

To create a dagroup object, click Add group in the OPC Toolbox Objects toolbar. A group is
created and automatically named, either by the OPC server or by the toolbox.

3 Quick Start: Using the OPC Data Access Explorer

3-8

On their own, dagroup objects are not useful. Once you add items to a group, you can control those
items, read values from the server for all the items in a group, and log data for those items, using the
dagroup object. In Step 6 you browse the OPC server for available tags. Step 7 involves adding the
items associated with those tags to the dagroup object.

Command-Line Equivalent

To create dagroup objects from the command line, you use the addgroup function. This example
adds a group to the opcda client object already created.

grp = addgroup(da)

grp =
 OPC Group Object: Group0
 Object Parameters
 GroupType: private
 Item: 0-by-1 daitem object
 Parent: localhost/Matrikon.OPC.Simulation.1
 UpdateRate: 0.5
 DeadbandPercent: 0
 Object Status
 Active: on
 Subscription: on
 Logging: off
 LoggingMode: memory

See “Create Data Access Group Objects” on page 6-4 for more information on creating group
objects from the command line.

 Access Data with the OPC Data Access Explorer

3-9

Step 6: Browse the Server Name Space
All OPC servers provide access to server items via a server name space. The name space is an
ordered list of the server items, usually arranged in a hierarchical format for easy access. A server
item (also known as a tag) is a measurement or data point on a server, providing information from a
device (such as a pressure sensor) or from another software package that supplies data through OPC
Data Access (such as a SCADA package).

Note If you know the item IDs of the server items you are interested in, you can skip this section and
proceed to “Step 7: Add OPC Data Access Items to the Group” on page 3-12. In this example,
assume that you do not know the exact item IDs, although you do know that you want to log
information from the Saw-toothed Waves and Triangular Waves provided by the Matrikon Simulation
Server.

The Namespace tab of the Hosts and Servers pane allows you to graphically browse a server’s
name space. Because most OPC servers contain thousands of server items, retrieving a name space
can be time consuming. When you connect to a server for the first time, the name space is not
automatically retrieved. You have to request the name space using one of the View buttons in the
Server Namespace toolbar, as shown in the following figure.

Click View hierarchical namespace to retrieve the hierarchical name space for the Matrikon OPC
Server. A tree view containing the Matrikon name space is shown in the pane. Your pane should look
similar to the following figure.

Note If you choose to view the name space as flat, you get a single list of all server items in the name
space, expanded to their fully qualified names. A fully qualified name can be used to create a daitem
object.

Browsing the name space using the app also provides some property information for each server
item. The properties include the published OPC Item properties such as Value, Quality, and

3 Quick Start: Using the OPC Data Access Explorer

3-10

Timestamp, plus additional properties published by the OPC server that may provide more
information on that particular server item. For a list of standard OPC properties and an explanation of
their use, see “OPC DA Server Item Properties” on page B-2.

In this example, you need to locate the Saw-toothed Waves and Triangle Waves signals in the
Matrikon Simulation Server. You can achieve this using the following steps:

1 Ensure that you are viewing the hierarchical name space.
2 Expand the Simulation items node. You will see all the signal types that the Matrikon Server

simulates.
3 Expand the Saw-toothed Waves node. A number of leaf nodes appear. A leaf node contains no

other nodes, and usually signifies a tag on an OPC server.
4 Select the Real8 leaf node. The properties of the server item appear in the properties table

below the name space tree, as shown in the following figure.

Note the Item Canonical DataType property, which is double. The Canonical DataType is
the data type that the server uses to store the server item’s value.

5 Select the UInt2 leaf node. You will notice that the properties update, and the Item Canonical
Datatype property for this server item is uint16. (MATLAB denotes integers with the number
of bits in the integer, such as uint16; the Matrikon Server uses the COM Variant convention
denoting the number of bytes, such as UInt2.)

You can continue browsing the server name space using the Server Namespace pane in the app.
One unique characteristic of the Matrikon Simulation Server is that you can view the connected
clients through the name space, by selecting the Clients node in the root of the name space.

In Step 7, you add three items to your newly created group object, using the Server Namespace
pane.

Command-Line Equivalent

From the command line, you can browse the server name space using the serveritems function.
You need to supply a connected opcda client object to the serveritems function, and an optional
character vector argument to limit the returned results. The character vector can contain wildcard
characters (*). An example of using serveritems is as follows.

sawtoothItems = serveritems(da, '*Saw*')

 Access Data with the OPC Data Access Explorer

3-11

sawtoothItems =
 'Saw-toothed Waves.'
 'Saw-toothed Waves.Int1'
 'Saw-toothed Waves.Int2'
 'Saw-toothed Waves.Int4'
 'Saw-toothed Waves.Money'
 'Saw-toothed Waves.Real4'
 'Saw-toothed Waves.Real8'
 'Saw-toothed Waves.UInt1'
 'Saw-toothed Waves.UInt2'
 'Saw-toothed Waves.UInt4'

The command-line equivalent for obtaining the server item properties is serveritemprops. See the
serveritemprops reference page for more information on using the function.

Step 7: Add OPC Data Access Items to the Group
Now that you have found the server items in the name space, you can add Data Access Item objects
(daitem object) for those tags to the dagroup object you created in Step 5. A daitem object is a link
to a tag in the name space, providing the tag value, and additional information on that item, such as
the Canonical Data Type.

Using the app, you create items directly from the name space tree, using a context menu on each
node in the tree.

Browse to Simulated Items > Saw-toothed Waves > Real8, and right-click that node to bring up
the context menu. Selecting Add to from the context menu provides you with a list of created groups
for the item associated with that server, and a menu item to create a New group (and add the item to
that group).

The menu displayed for this example is shown in the following figure.

Click Group0 to add the item to the already existing group that you created in Step 5. A daitem
object is created in the OPC Toolbox Objects pane. The following figure shows the newly created
item highlighted, with the properties of the item shown in the Properties pane.

3 Quick Start: Using the OPC Data Access Explorer

3-12

Read a Value from the Server

A daitem object initially contains no information about the server item that it represents. The
daitem object only updates when the server notifies the client of a change in status for that item (the
notification is called a data change event) or the client specifically reads a value from the server.
Using the app, you can force a read of the item by clicking Read in the Properties pane of the
required item.

Click Read. The Value, Quality, and Timestamp fields in the app will update. Value contains the
last value that the server read from that particular item. Quality provides a measure of how
meaningful Value is. If Quality is Good, then the Value can be trusted to be the same as the device
or object to which the item refers, but only at the time provided by the Timestamp field. If Quality is
anything other than Good, then the Value of the item is questionable.

Each time you read or obtain data from the server through a data change event, the server will
provide you with updated Value, Quality, and Timestamp values.

Add More Items to the Group

Using the Namespace pane, expand the Triangle Waves node and add items for the Real8 and
UInt2 server items. You will then have three items associated with your dagroup object. In Step 8,
you configure a logging session for that group. You then log data in Step 9 from the three items you
just created, and visualize the data in Step 10.

Command-Line Equivalent

You use the additem function to add items to a dagroup object. You need to pass the dagroup
object to which the items will be added, and the fully qualified item ID as a character vector. The item
IDs were found using the serveritems function in Step 6.

itm1 = additem(grp, 'Saw-toothed Waves.Real8')

itm1 =
 OPC Item Object: Saw-toothed Waves.Real8
 Object Parameters

 Access Data with the OPC Data Access Explorer

3-13

 Parent: Group0
 AccessRights: read/write
 DataType: double
 Object Status
 Active: on
 Data:
 Value:
 Quality:
 Timestamp:

You can add multiple items to the group in one additem call, by specifying multiple ItemID values in
a cell array.

itms = additem(grp, {'Triangle Waves.Real8', ...
'Triangle Waves.UInt2'})

itms =
 OPC Item Object Array:
 Index: DataType: Active: ItemID:
 1 double on Triangle Waves.Real8
 2 uint16 on Triangle Waves.UInt2

For more information on adding items to groups, see “Create Data Access Item Objects” on page 6-
6.

Step 8: View All Item Values
You can view the Value, Quality, and Timestamp for each item using the item properties pane.
However, that view only provides access to one item at a time. The group object is designed to allow
you to read and write values from all items in the group, and to log data to memory and/or disk. You
use the Group Read/Write pane to view the values of the items you created in Step 7 to determine
the approximate range of values that each item value varies over. The information from this pane will
help you to verify that the data is updating, and whether you can plot the data in one set of axes or in
subplots.

Click Group0 in the OPC Toolbox Objects pane. Select the Read/Write tab in the top of the Group
properties pane. The OPC Toolbox Objects pane should now look similar to the one shown in the
following figure.

3 Quick Start: Using the OPC Data Access Explorer

3-14

The Value, Quality, and Timestamp values in the table of items will continually update as long as
you have Subscription enabled. Subscription controls whether data change events are sent by the
OPC server to the toolbox, for items whose values change. UpdateRate and DeadbandPercent define
how often the items must be queried for a new value, and whether all value changes or only changes
of a specified magnitude are sent to the toolbox. For more information on Subscription, see “Data
Change Events and Subscription” on page 7-8.

By observing the data for a while, you will see that the three signals appear to have similar ranges.
This indicates that you can visualize the data in the same axes when you plot it in Step 11.

You can also use the Group Read/Write pane for writing values to many items simultaneously.
Specify a value in the Write column of the Item data table for each item you want to write to, and
click Write, to be able to write to those items.

In Step 10 you will configure a logging task and log data for the three items.

Command-Line Equivalent

You can use the read function with a group object as the first parameter to read values from all items
in a group. The read function is discussed in more detail in “Read and Write Data on OPC DA Server”
on page 7-2.

Step 9: Configure Group Properties for Logging
Now that your dagroup object contains items, you can use the group to control the interaction of
those items with the server. In this step, you configure the group to log data from those items for 2

 Access Data with the OPC Data Access Explorer

3-15

minutes at 0.2-second intervals. You will use the logged data in Step 11 to visualize the signals
produced by the Matrikon Simulation Server.

OPC Data Access Servers provide access only to "live" data (the last known value of each server item
in their name space). In many cases, a single value of a signal is not useful, and a time series
containing the signal value over a period of time is helpful in analyzing that signal or signal set.
Industrial Communication Toolbox allows you to log all OPC items in a group to disk or memory, and
to retrieve that data for analysis in MATLAB.

You configure a logging session using the dagroup object. By modifying the properties associated
with logging, you control how often the data must be sent from the server to the client, how many
records the group must log, and where to log the data. This information is summarized in the
Logging pane of the dagroup object properties in the app.

Select the Logging tab in the Properties pane. The following figure shows the Logging pane for the
dagroup object created in this example.

Using the Logging pane, configure the logging session using the following steps:

1 Set Update rate to 0.2.
2 Set Number of records to log to 600. Because you want to log for 2 minutes (120 seconds) at

0.2-second update rates, you need 600 (i.e., 120/0.2) records.

You can leave the rest of the logging properties at their default values, because this example uses
data logged to memory.

In Step 10 you log the data. In Step 11 you will visualize the data.

3 Quick Start: Using the OPC Data Access Explorer

3-16

Command-Line Equivalent

You use the set function to set OPC object properties. From the MATLAB command line, you can
calculate the number of records required for the logging task.

logDuration = 2*60;
logRate = 0.2;
numRecords = ceil(logDuration./logRate)
set(grp, 'UpdateRate',logRate,'RecordsToAcquire',numRecords);

Step 10: Log OPC Server Data
In Step 9 you configured the dagroup object logging properties. Your object is now ready to log the
required amount of data to memory.

Click Start in the Logging tab. The logging task begins, and the toolbox engine receives and stores
the data from the OPC server. The progress bar indicates the status of the logging task, as shown in
the following figure.

Note The logging task occurs in the background. You can continue working in MATLAB while a
logging task is in operation. The logging task is not affected by any other computation taking place in
MATLAB, and MATLAB is not blocked from processing by the logging task.

Wait for the task to complete before continuing with Step 11.

Command-Line Equivalent

You use the start function with the required dagroup object to start a logging task.

start(grp)

Although the logging operation takes place in the background, you can instruct MATLAB to wait for
the logging task to complete, using the wait function.

wait(grp)

Step 11: Plot the Data
In this introductory example, you use the app to visualize the data logged in Step 10. In a more
complex task, you would export the logged data to the workspace and use MATLAB functions to
analyze and interpret the logged data.

When the logging task stops, the Logging pane will update to show that the task is complete. An
example of the logging status portion of the Logging pane after a completed task is shown in the
following figure.

 Access Data with the OPC Data Access Explorer

3-17

To view the data from the app, click Plot. The logged data will be retrieved from the toolbox engine
and displayed in a MATLAB figure window. The format of the displayed data and annotation options
are controlled by settings in the Plot options frame of the Logging pane. By default, the plot will be
annotated with any data points that have a Quality other than Good. Values whos Quality is Bad are
annotated with a large red circle with a black border, and Values with Quality of Repeat are
annotated with a yellow star. You should always view the Quality returned with the Value of an item to
determine if the Value is meaningful or not. The relationship between the Value and Quality of an item
is discussed in “OPC Data: Value, Quality, and TimeStamp” on page 8-2.

An example of the plotted data is shown in the next figure.

Note Your plotted data will almost certainly not look like the one shown here, because the logging
task was executed at a different time.

Notice how the three signals seem almost completely unrelated, except for the period of the two
Real8 signals. The peak values for each signal are different, as are the periods for the two Triangle
Waves signals. By visualizing the data, you can gain some insight into the way the Matrikon OPC
Simulation Server simulates each tag. In this case, it is apparent that Real8 and UInt2 signals have
a different period.

Command-Line Equivalent

When your logging task has completed you transfer data from the toolbox engine to the MATLAB
workspace using the getdata function, which provides two types of output, depending on the

3 Quick Start: Using the OPC Data Access Explorer

3-18

'datatype' argument. For more information see getdata in the reference pages. In this case you
retrieve the data into separate arrays, and plot the data.

The example below reproduces the figure display that you get when you click Plot.

[logIDs, logVal,logQual,logTime,logEvtTime] = ...
 getdata(grp,'double');
plot(logTime,logVal);
axis tight
datetick('x','keeplimits')
legend(logIDs)

Step 12: Clean Up
When you are finished with an OPC task, you should remove the task objects from memory and clear
the MATLAB workspace of the variables associated with these objects. The OPC Data Access
Explorer app automatically deletes all objects that it creates from the toolbox engine. If you work
only in the OPC Data Access Explorer, you do not need to perform any further cleanup other than
to close the app. You close the app by using the Exit option in the File menu, or by using the Close
button in the title bar. You will be prompted to save the OPC Data Access Explorer session. You can
choose to save the session to an OPC session file (.osf file) for later use, or exit without saving.

Command-Line Equivalent

When you use OPC objects from the MATLAB command line, or from your own functions, you must
remove them from the OPC software engine using the delete function. Note that when you delete a
toolbox object, the children of that object are automatically removed from the toolbox engine. In the
following example, there is no need to delete grp and itm, as they are children of da.

disconnect(da)
delete(da)
clear da grp itm
close(gcf)

For more details about OPC object management, see “Delete Objects” on page 6-18.

 Access Data with the OPC Data Access Explorer

3-19

Quick Start: Using OPC Historical Data
Access Functions

The best way to learn about OPC capabilities is to look at a simple example. This chapter illustrates
the basic steps required to read data from an OPC Data Historical Access (HDA) server for analysis
and visualization.

This chapter references other sections in the documentation that provide detailed discussions of the
relevant concepts.

4

Access Historical Data

In this section...
“HDA Programming Overview” on page 4-2
“Step 1: Locate Your OPC Historical Data Access Server” on page 4-2
“Step 2: Create an OPC Historical Data Access Client Object” on page 4-3
“Step 3: Connect to the OPC Historical Data Access Server” on page 4-3
“Step 4: Retrieve Historical Data” on page 4-3
“Step 5: Plot the Data” on page 4-4
“Step 6: Clean Up” on page 4-4

HDA Programming Overview
This section illustrates the basic steps to create an OPC Historical Data Access (HDA) application by
retrieving historical data from the Triangle Wave and Saw-toothed Wave signals provided by the
Matrikon OPC Simulation Server.

Note To run the sample code in the following steps you need the Matrikon OPC Simulation Server on
your local machine. For installation details, see “Install an OPC DA or HDA Simulation Server for OPC
Classic Examples” on page 1-14. The code requires only minor changes to work with other servers.

Step 1: Locate Your OPC Historical Data Access Server
In this step, you obtain two pieces of information that the toolbox needs to uniquely identify the OPC
Historical Data Access server that you want to connect to. You use this information when creating an
OPC Historical Data Access (HDA) client object, described in “Step 2: Create an OPC Historical Data
Access Client Object” on page 4-3.

The first piece of information is the host name of the server computer. The host name (a descriptive
name like "HistorianServer" or an IP address such as 192.168.16.32) qualifies that computer
on the network, and is used by the OPC protocols to determine the available OPC servers on that
computer. In any OPC application, you must know the name of the OPC server's host, so that a
connection with that host can be established. Your network administrator can provide a list of host
names that provide OPC servers on your network. In this example, you will use localhost as the
host name, because you will connect to the OPC server on the same machine as the client.

The second piece of information is the OPC server's server ID. Each OPC server on a particular host
is identified by a unique server ID (also called the Program ID or ProgID), which is allocated to that
server on installation. The server ID is a character vector, usually containing periods.

Although your network administrator can provide a list of server IDs for a particular host, you can
query the host for all available OPC servers. “Discover Available HDA Servers” on page 12-4
discusses how to query hosts from the command line.

Use the opchdaserverinfo function to query from the command line.

4 Quick Start: Using OPC Historical Data Access Functions

4-2

hostInfo = opchdaserverinfo('localhost')

hostInfo =
 1x4 OPC HDA ServerInfo array:
index Host ServerID HDASpecification Description
----- --------- --------------------------------- ----- --
 1 localhost Advosol.HDA.Test.3 HDA1 Advosol HDA Test Server V3.0
 2 localhost IntegrationObjects.OPCSimulator.1 HDA1 Integration Objects OPC DA DX HDA Simulator 2
 3 localhost IntegrationObjects.OPCSimulator.1 HDA1 Integration Objects' OPC DA/HDA Server Simulator
 4 localhost Matrikon.OPC.Simulation.1 HDA1 MatrikonOPC Server for Simulation and Testing

Examining the returned structure in more detail provides the server IDs of each OPC server.
allServers = {hostInfo.ServerID}

allServers =
Columns 1 through 3
 'Advosol.HDA.Test.3' 'IntegrationObjects.OPCSimulator.1' 'IntegrationObjects.OPCSimulator.1'
Column 4
 'Matrikon.OPC.Simulation.1'

Step 2: Create an OPC Historical Data Access Client Object
After determining the host name and server ID of the OPC server to connect to, create an OPC HDA
client object. The client controls the connection status to the server, and stores events that occur
from that server.

Use the opchda function, specifying the host name and Server ID arguments.

hdaClient = opchda('localhost','Matrikon.OPC.Simulation.1')

hdaClient =
OPC HDA Client localhost/Matrikon.OPC.Simulation.1:
 Host: localhost
 ServerID: Matrikon.OPC.Simulation.1
 Timeout: 10 seconds

 Status: disconnected

 Aggregates: -- (client is disconnected)
ItemAttributes: -- (client is disconnected)
Methods

For details on creating clients, see “Create an OPC HDA Client Object” on page 13-4.

Step 3: Connect to the OPC Historical Data Access Server
OPC Historical Data Access Client objects are not automatically connected to the server when they
are created.

Use the connect function to connect an OPC HDA client object to the server at the command line.

connect(hdaClient)

Step 4: Retrieve Historical Data
Generate Historical Data

After connecting to the HDA server you can read historical data values for the Saw-toothed
Waves.Real8 and Triangle Waves.Real8 items. The Matrikon Simulation Server stores data only

 Access Historical Data

4-3

for items that have been activated and read by an OPC Data Access client. For this reason, run this
code to generate and automatically store data in the historian.

Enter the following at the command line:

da = opcda('localhost','Matrikon.OPC.Simulation.1');
connect(da);
grp = addgroup(da);
additem(grp,'Saw-toothed Waves.Real8');
additem(grp,'Triangle Waves.Real8');
logDuration = 2*60;
logRate = 0.2;
numRecords = ceil(logDuration./logRate);
grp.UpdateRate = logRate;
grp.RecordsToAcquire = numRecords;
start(grp)
wait(grp)

Read a Value from the Historical Data Access Server

To read historical values from an HDA server for a particular time range, use the readRaw function.
This function takes a list of items as well as a start and end time (demarcating the time span) for
which historical data is required.

data = hdaClient.readRaw({'Saw-toothed Waves.Real8','Triangle Waves.Real8'},now-100000,now)

data =
1-by-2 OPC HDA Data object:
 ItemID Value Start TimeStamp End TimeStamp Quality
----------------------- ----------------- ----------------------- ----------------------- ----------------------
Saw-toothed Waves.Real8 200 double values 2010-11-02 12:22:32.981 2010-11-02 12:23:13.363 1 unique quality [Raw]
Triangle Waves.Real8 199 double values 2010-11-02 12:22:33.141 2010-11-02 12:23:13.293 1 unique quality [Raw]

The retrieved historical data contains a Value, Timestamp, and Quality for each data point. To view
these elements from the previous example, use the following instructions:

data.Value
data.TimeStamp
data.Quality

Step 5: Plot the Data
Use this code to generate the plot figure:

plot(data)
axis tight
datetick('x','keeplimits')
legend(data.ItemID)

Step 6: Clean Up
After using OPC objects at the MATLAB command line or from your own functions, you must remove
them from the toolbox engine with the delete function. Note that when you delete a toolbox object,
the children of that object are automatically removed from the toolbox engine.

4 Quick Start: Using OPC Historical Data Access Functions

4-4

disconnect(hda)
delete(hdaClient)
clear hdaClient data

Details of OPC object management are discussed in “Delete Objects” on page 6-18.

 Access Historical Data

4-5

Data Access User's Guide

7

Introduction to OPC Data Access (DA)

• “Discover Available Data Access Servers” on page 5-2
• “Connect to OPC Data Access Servers” on page 5-4

5

Discover Available Data Access Servers
In this section...
“Prerequisites” on page 5-2
“Determine Server IDs for a Host” on page 5-2

Prerequisites
To interact with an OPC server, you need two pieces of information:

• The hostname of the computer on which the OPC server has been installed. Typically the
hostname is a descriptive term (such as 'plantserver') or an IP address (such as
192.168.2.205).

• The server ID of the server you want to access on that host. Because a single computer can host
more than one OPC server, each OPC server installed on that computer is given a unique ID
during the installation process.

Your network administrator will be able to provide you with the hostnames for all computers
providing OPC servers on your network. You may also obtain a list of server IDs for each host on your
network, or you can use the toolbox function opcserverinfo to access server IDs from a host, as
described in the following section.

Determine Server IDs for a Host
When an OPC server is installed, a unique server ID must be assigned to that OPC server. The server
ID provides a unique name for a particular instance of an OPC server on a host, even if multiple
copies of the same server software are installed on the same machine.

To determine the server IDs of OPC servers installed on a host, call the opcserverinfo function,
specifying the hostname as the only argument. When called with this syntax, opcserverinfo
returns a structure containing information about all the OPC servers available on that host.

info = opcserverinfo('localhost')

info =
 Host: 'localhost'
 ServerID: {1x4 cell}
 ServerDescription: {1x4 cell}
 OPCSpecification: {'DA2' 'DA2' 'DA2' 'DA2'}
 ObjectConstructor: {1x4 cell}

The fields in the structure returned by opcserverinfo provide the following information.

5 Introduction to OPC Data Access (DA)

5-2

Server Information Returned by opcserverinfo

Field Description
Host Character vector that identifies the name of the host. Note that no

name resolution is performed on an IP address.
ServerID Cell array containing the server IDs of all OPC servers accessible

from that host.
ServerDescription Cell array containing descriptive text for each server.
OPCSpecification Cell array containing the OPC Specification that the server provides.
ObjectConstructor Cell array containing default syntax you can use to create an OPC

Data Access Client object associated with the server. See “Create a
DA Client Object” on page 5-4 for more information.

 Discover Available Data Access Servers

5-3

Connect to OPC Data Access Servers
In this section...
“Overview” on page 5-4
“Create a DA Client Object” on page 5-4
“Connect a Client to the DA Server” on page 5-5
“Browse the OPC DA Server Name Space” on page 5-5

Overview
After you get information about your OPC servers, described in “Discover Available Data Access
Servers” on page 5-2 you can establish a connection to the server by creating an OPC Client object
and connecting that client to the server. These steps are described in the following sections.

Note To run the sample code in the following examples, you must have the Matrikon OPC Simulation
Server available on your local machine. For information on installing this, see “Install an OPC DA or
HDA Simulation Server for OPC Classic Examples” on page 1-14. The code requires only minor
changes work with other servers.

Create a DA Client Object
To create an opcda object, call the opcda function specifying the hostname, and server ID. You
retrieved this information using the opcserverinfo function (described in “Discover Available Data
Access Servers” on page 5-2).

This example creates an opcda object to represent the connection to a Matrikon OPC Simulation
Server. The opcserverinfo function includes the default opcda syntax in the ObjectConstructor
field.

da = opcda('localhost', 'Matrikon.OPC.Simulation.1');

View a Summary of a Client Object

To view a summary of the characteristics of the opcda object you created, enter the variable name
you assigned to the object at the command prompt. For example, this is the summary for the object
da.

da

The items in this list correspond to the numbered elements in the object summary:

5 Introduction to OPC Data Access (DA)

5-4

1 The title of the Summary includes the name of the opcda client object. The default name for a
client object is made up of the 'host/serverID'. You can change the name of a client object
using the set function, described in “Configure OPC Data Access Object Properties” on page 6-
13.

2 The Server Parameters provide information on the OPC server that the client is associated
with. The host name, server ID, and connection status are provided in this section. You connect to
an OPC server using the connect function, described in “Connect a Client to the DA Server” on
page 5-5.

3 The Object Parameters section contains information on the OPC Data Access Group
(dagroup) objects configured on this client. You use group objects to contain collections of items.
Creating group objects is described in “Create Data Access Group Objects” on page 6-4.

Connect a Client to the DA Server
You connect a client to the server using the connect function.

connect(da);

Once you have connected to the server, the Status information in the client summary display will
change from 'disconnected' to 'connected'.

If the client could not connect to the server for some reason (for example, if the OPC server is shut
down) an error message will be generated. For information on troubleshooting connections to an OPC
server, see “Troubleshooting OPC Issues” on page 1-17.

When you have connected the client to the server, you can perform the following tasks:

• Get diagnostic information about the OPC server, such as the server status, last update time, and
supported interfaces. You use the opcserverinfo function to obtain this information.

• Browse the OPC server name space for information on the available server items. See “Browse the
OPC DA Server Name Space” on page 5-5 for details.

• Create group and item objects to interact with OPC server data. See “Create OPC Data Access
Objects” on page 6-2 for information.

Browse the OPC DA Server Name Space
A connected client object allows you to interact with the OPC server to obtain information about the
name space of that server. The server name space provides access to all the data points provided by
the OPC server by naming each of the data points with a server item, and then arranging those server
items into a name space that provides a unique identifier for each server item.

This section describes how you use a connected client object to browse the name space and find
information about each server item. These activities are described in the following sections:

• “Get the DA Server Name Space” on page 5-6 describes how to obtain a server name space, or
a partial server name space, using the getnamespace and serveritems functions.

• “Get Information about a Specific Server Item” on page 5-7 describes how to query the server
for the properties of a specific server item.

 Connect to OPC Data Access Servers

5-5

Get the DA Server Name Space

You use the getnamespace function to retrieve the name space from an OPC server. You must specify
the client object that is connected to the server you are interested in. The name space is returned to
you as a structure array containing information about each node in the name space.

The example below retrieves the name space of the Matrikon OPC Simulation Server installed on the
local host.

da = opcda('localhost','Matrikon.OPC.Simulation.1');
connect(da);
ns = getnamespace(da)

ns =
3x1 struct array with fields:
 Name
 FullyQualifiedID
 NodeType
 Nodes

The fields of the structure are described in the following table.

Field Description
Name The name of the node, as a character vector.
FullyQualifiedID The fully qualified item ID of the node, as a character vector. The fully

qualified item ID is made up of the path to the node, concatenated with
'.' characters. You use the fully qualified item ID when creating an item
object associated with this node.

NodeType The type of node. NodeType can be 'branch' (contains other nodes) or
'leaf' (contains no other branches).

Nodes Child nodes. Nodes is a structure array with the same fields as ns,
representing the nodes contained in this branch of the name space.

From the example above, exploring the name space shows.
ns(1)

ans =
 Name: 'Simulation Items'
 FullyQualifiedID: 'Simulation Items'
 NodeType: 'branch'
 Nodes: [8x1 struct]

ns(3)

ans =
 Name: 'Clients'
 FullyQualifiedID: 'Clients'
 NodeType: 'leaf'
 Nodes: []

From the information above, the first node is a branch node called 'Simulation Items'. Since it is
a branch node, it is most likely not a valid server item. The third node is a leaf node (containing no
other nodes) with a fully qualified ID of 'Clients'. Since this node is a leaf node, it is most likely a
server item that can be monitored by creating an item object.

To examine the nodes further down the tree, you need to reference the Nodes field of a branch node.
For example, the first node contained within the 'Simulation Items' node is obtained as follows.

5 Introduction to OPC Data Access (DA)

5-6

ns(1).Nodes(1)

ans =
 Name: 'Bucket Brigade'
 FullyQualifiedID: 'Bucket Brigade.'
 NodeType: 'branch'
 Nodes: [14x1 struct]

The returned result shows that the first node of 'Simulation Items' is a branch node named
'Bucket Brigade', and contains 14 nodes.

ns(1).Nodes(1).Nodes(9)

ans =
 Name: 'Real8'
 FullyQualifiedID: 'Bucket Brigade.Real8'
 NodeType: 'leaf'
 Nodes: []

The ninth node in 'Bucket Brigade' is named 'Real8' and has a fully qualified ID of 'Bucket
Brigade.Real8'. You use the fully qualified ID to refer to that specific node in the server name
space when creating items.

You can use the flatnamespace function to flatten a hierarchical name space.

Get Information about a Specific Server Item

In addition to publishing a name space to all clients, an OPC server provides information about the
properties of each of the server items in the name space. These properties provide information on the
data format used by the server to store the server item value, a description of the server item, and
additional properties configured when the server item was created. The additional properties can
include information on the range of the server item, the maximum rate at which the server can
update that server item value, etc. See “OPC DA Server Item Properties” on page B-2.

You access a property using a defined set of property IDs. A property ID is simply a number that
defines a specific property of the server item. Property IDs are divided into three categories:

• “OPC Specific Properties” on page B-4 (1-99) that every OPC server must provide. The OPC
Specific Properties include the server item’s Value, Quality, and Timestamp. For more information
on understanding OPC data, see “OPC Data: Value, Quality, and TimeStamp” on page 8-2.

• “OPC Recommended Properties” on page B-5 (100-4999) that OPC servers can provide. These
properties include maximum and minimum values, a description of the server item, and other
commonly used properties..

• Vendor Specific Properties (5000 and higher) that an OPC server can define and use. These
properties may be different for each OPC server, and provide a space for OPC server
manufacturers to define their own properties.

You query properties of a server item using the serveritemprops function, specifying the client
object, the fully qualified item ID of the server item you are interested in, and an optional vector of
property IDs that you want to retrieve. If you do not specify the property IDs, all properties defined
for that server item are returned.

Note You obtain the fully qualified item ID from the server using the getnamespace function or the
serveritems function, which simply returns all fully qualified item IDs in a cell array of character
vectors.

 Connect to OPC Data Access Servers

5-7

The following example queries the Item Description property (ID 101) of the server item 'Bucket
Brigade.ArrayOfReal8' from the example in “Get the DA Server Name Space” on page 5-6.

p = serveritemprops(da, 'Bucket Brigade.ArrayOfReal8', 101)

p =
 PropID: 101
 PropDescription: 'Item Description'
 PropValue: 'Bucket brigade item.'

For a list of OPC Foundation property IDs, see “OPC DA Server Item Properties” on page B-2.

5 Introduction to OPC Data Access (DA)

5-8

Using OPC Data Access Objects

To interact with an OPC server, you need to create toolbox objects. You create an OPC Data Access
Client (opcda client) object to provide a connection to a particular OPC server. You then create one
or more Data Access Groups (dagroup objects) to control sets of Data Access Items (daitem
objects), which represent links to server items. OPC Data Access objects are described in more detail
in “Toolbox Object Hierarchy for the Data Access Standard” on page 6-2.

• “Create OPC Data Access Objects” on page 6-2
• “Configure OPC Data Access Object Properties” on page 6-13
• “Delete Objects” on page 6-18
• “Save and Load Objects” on page 6-20

6

Create OPC Data Access Objects
In this section...
“Overview to Objects” on page 6-2
“Toolbox Object Hierarchy for the Data Access Standard” on page 6-2
“How Toolbox OPC Objects Relate to OPC DA Servers” on page 6-3
“Create Data Access Group Objects” on page 6-4
“Create Data Access Item Objects” on page 6-6
“Build an Object Hierarchy with a Disconnected Client” on page 6-7
“Create OPC Data Access Object Vectors” on page 6-8
“Work with Public Groups” on page 6-10

Overview to Objects
The first step in interacting with an OPC server from MATLAB is to establish a connection with the
OPC server. You create opcda client objects to control the connection between an OPC server and the
toolbox. Then you create dagroup objects to manage sets of daitem objects, and then you create the
daitem objects themselves, which represent server items. A server item corresponds to a physical
device or to a storage location in a SCADA system or DCS.

You must create the toolbox objects in the order described above. “Connect to OPC Data Access
Servers” on page 5-4 describes how to create an opcda client object. This section discusses how to
create and configure dagroup and daitem objects.

Toolbox Object Hierarchy for the Data Access Standard
OPC DA access in MATLAB is implemented using three basic objects, designed to help you manage
connections to servers and collections of server items. The three objects are arranged in a specific
hierarchy, shown in the following figure.

1 OPC Data Access Client objects (opcda client objects) represent a specific OPC client
instance that can communicate with only one server. You define the server using the Host and
ServerID properties. The Host property defines the computer on which the server is installed.
The ServerID property defines the Program ID (ProgID) of the server, created when the server
was installed on that host. The opcda client object acts as a container for multiple group objects,
and manages the connection to the server, communication with the server, and server name
space browsing.

2 Data Access Group objects (dagroup objects) represent containers for one or more server
items (data points on the server.) A dagroup object manages how often the items in the group

6 Using OPC Data Access Objects

6-2

must be read, whether historical item information must be stored, and also manages creation and
deletion of items. Groups cannot exist without an opcda client object. You create dagroup
objects using the addgroup function of an opcda client object.

3 Data Access Item objects (daitem objects) represent server items. Items are defined by an
item ID, which uniquely defines that server item in the server's name space. A daitem object has
a Value, a Quality, and a TimeStamp, representing the information collected by the server
from an instrument or data point in a SCADA system. The Value, Quality, and TimeStamp
properties represent the information known to the server when the server was last asked to
access information from that instrument.

A dagroup object can only exist “within” an opcda client object. Similarly, a daitem object can only
exist within a dagroup object. You create dagroup objects using the addgroup method of an opcda
client object. You create daitem objects using the additem method of the dagroup object.

How Toolbox OPC Objects Relate to OPC DA Servers
Industrial Communication Toolbox uses objects to define the server that the client must connect to,
and the arrangement of items in groups. The following figure shows the relationship between the
OPC Data Access objects and an OPC server.

The opcda client object establishes the connection between MATLAB and the OPC server, using OPC
Data Access Specification standards. The standards are based on Microsoft COM/DCOM
interoperability standards.

The daitem objects represent specific server items. Note that a client typically requires only a subset
of the entire name space of a server in order to operate effectively. In the figure above, only the PV
and SP items of FIC01, and the LIT01 item, are required for that particular group. Another group
may only contain a single daitem object, representing a single server item.

 Create OPC Data Access Objects

6-3

Note The dagroup object has no equivalent on the OPC server. However, the server keeps a record
of each group that a client has created, and uses that group name to communicate to the client
information about the items in that group.

Create Data Access Group Objects
Once you have created an opcda client object, you can add groups to the client. A dagroup object
manages multiple daitem objects. Using a dagroup object, you can read data from all items in that
group in one action, write data to the items in the group, define actions to take when any of the items
in that group change value, or log data for all the items in that group for analysis and processing.

To create a dagroup object, you use the addgroup function, specifying the opcda client object that
you want to add the group to, and an optional group name. See “Specify a Group Name” on page 6-
4 for rules on defining your own group name.

The example below creates an opcda client object, connects that object to the server, and adds two
groups to the client. The first group is automatically named by the server, and the second group is
given a specified name.

da = opcda('localhost','Matrikon.OPC.Simulation.1');
connect(da);
grp1 = addgroup(da);
grp2 = addgroup(da,'MyGroup');

Specify a Group Name

Each group created under a specific client object must have a unique name. This allows the OPC
server to uniquely identify the group when a client makes a server request using that group. The
name can be any nonempty character vector.

You do not need to specify a group name for each group that you add to a client. If you do not specify
a name, the OPC server will automatically assign a group name for you. Each OPC server defines
different rules for automatic naming of groups.

If you attempt to create a group with the same name as a group already created for that client, an
error will be generated.

See “Delete Objects” on page 6-18 for information about how groups are automatically named when
you create groups with a disconnected client.

View a Summary of a Group Object

To view a summary of the characteristics of the dagroup object you created, enter the variable name
you assigned to the object at the command prompt. For example, this is the summary for the object
grp1.

grp1

6 Using OPC Data Access Objects

6-4

The items in this list correspond to the numbered elements in the object summary:

1 The title of the Summary includes the name of the dagroup object. In the example, this is the
server-assigned name Group0.

2 The Object Parameters section lists the values of key dagroup object properties. These
properties describe the type of group, the daitem objects associated with the group, the name of
the group's parent opcda client object, and properties that control how the server updates item
information for this group. In the example, any items created in this group will be updated at
half-second intervals, with a deadband of 0%. For information on how the server updates item
information, see “Data Change Events and Subscription” on page 7-8.

3 The Object Status section lists the current state of the object. A dagroup object can be in one
of several states:

• The Active state defines whether any operation on the group applies to the item.
• The Subscription state defines whether changes in the item's value or quality will produce

a data change event. See “Data Change Events and Subscription” on page 7-8 for more
information about the Subscription property.

• The Logging state describes whether the group is logging or not. See “Log OPC Server Data”
on page 7-11 for information on how to log data.

4 The Logging Parameters section describes the values of the logging properties for that group.
Logging properties control how the dagroup object logs data, including the duration of the
logging task and the destination of logged data. See “Log OPC Server Data” on page 7-11 for
information on logging data using dagroup objects.

Use a Group Object

A dagroup object with no items does not perform any useful functions. Once you have added items to
a group, you can use the group to

• Read data from, and write data to, the OPC server. See “Read and Write Data on OPC DA Server”
on page 7-2 for more information.

• Control how an OPC server notifies MATLAB about changes in any item associated with a
dagroup object. See “Data Change Events and Subscription” on page 7-8 for more information.

• Log data from all items in that group, for later processing and analysis. “Log OPC Server Data” on
page 7-11 describes how to control logging.

 Create OPC Data Access Objects

6-5

Create Data Access Item Objects
A dagroup object provides a container for collecting one or more daitem objects. A daitem object
provides a link to a specific server item. The daitem object defines how you want to retrieve and
store the client-side value of the server item, and also stores the last data retrieved from the server
for that server item. You can use a daitem object to read data from the server for that server item, or
to write values to that server item on the server.

You create a daitem object using the additem function, specifying the dagroup object to which the
item must be added and the fully qualified item ID of the server item. You can obtain a list of the fully
qualified item IDs for all server items using the serveritems function.

The example below builds on the example in “Create Data Access Group Objects” on page 6-4 by
adding a daitem object to the first group created in that example. The server item associated with
this item is called 'Random.Real8'.

itm1 = additem(grp1,'Random.Real8');

Specify a Local Data Type for the Item

When you create a daitem object, you create an object that stores the value of the server item locally
on the client. You can specify that the local storage data type be different from the server storage
data type. For example, you can specify that a value stored on the server as an integer be stored in
MATLAB as a double-precision floating-point value, because you know that you will be performing
double-precision calculations with that item's value.

Although it is possible to modify the data type of the item after it is created, you can also create an
item with a specific data type by specifying the data type as the third parameter to the additem
function. The data type specification must be a character vector describing that data type. Valid OPC
data types are any MATLAB numeric data type, plus 'char', and 'logical'. See “Work with
Different Data Types” on page 8-13 for more information on supported data types.

The example below adds another item to the group grp1 created by the example in “Create Data
Access Group Objects” on page 6-4. The item ID is 'Random.UInt2', which is stored on the server
as an unsigned 16-bit integer. By specifying the data type as 'double', the value will be returned to
MATLAB and stored locally as a double-precision floating-point number.

itm2 = additem(grp1,'Random.UInt2','double');

Note The conversion process from the server's data type to the item's data type is performed by the
server, using Microsoft COM Variant conversion rules. If you attempt to convert a value to a data type
that does not have that value's range, the OPC server will return an error when attempting to update
the value of that item. You should then change the data type to one that has the same or larger range
than the server item's data type. See “Work with Different Data Types” on page 8-13 for more
information.

Specify the Active Status of an Item Object

You can optionally specify the Active status of an daitem object by passing a character vector as
the fourth parameter to the additem function. The Active status can be 'on' or 'off'. An item
with an Active status of 'off' behaves as if the item was never created: No server updates of the
item's value will take place, and a read or write with that item will fail. You use the Active status to

6 Using OPC Data Access Objects

6-6

temporarily disable an item without deleting that item from MATLAB. For more information on the
Active status, see the reference page for the Active property.

View a Summary of the Item Object

To view a summary of the characteristics of the daitem object you created, enter the variable name
you assigned to the object at the command prompt. For example, this is the summary for the object
itm1.

itm1

The items in this list correspond to the numbered elements in the object summary:

1 The title of the Summary includes the fully qualified item ID of the item. In the example, the item
is associated with the 'Random.Real8' server item.

2 The Object Parameters section lists the values of key daitem object properties. These
properties describe the name of the item's Parent group, and the Access Rights advertised
by the server.

3 The Object Status section lists the Active state of the object. The Active state defines
whether any operation on the parent group applies to the item, and whether you want to be
notified of any changes in the item's value.

4 The Data Parameters section lists the Data Type used by the daitem object to store the
value, and the Value, Quality, and TimeStamp of the last value obtained from the server for
this item. For more information on the Value, Quality, and TimeStamp of an item, see “OPC
Data: Value, Quality, and TimeStamp” on page 8-2.

Use an Item Object

You create a daitem object to query the value of the associated server item, or to write values to that
server item. You can write values to a single item, and read values from a single item, using the
daitem object. For more information on reading and writing values, see “Read and Write Data on
OPC DA Server” on page 7-2.

You can also use the parent dagroup object to read and write values for all of the daitem objects
contained in that group, or to log changes in the item's value for a period of time. See “Log OPC
Server Data” on page 7-11 for information on logging data.

Build an Object Hierarchy with a Disconnected Client
When you create objects with a connected client, the toolbox validates those objects with the OPC
server before creating them on the client. For example, when adding a group to the client using the

 Create OPC Data Access Objects

6-7

addgroup function, the validation process ensures that no other group with the same name exists on
the server, and that the server will accept the group. When adding an item, the item ID is verified to
be a valid server item.

Occasionally you might want to build up a toolbox object hierarchy without connecting to the server.
For example, you might be off site and want to configure a logging task for use on the following day,
rather than wait to configure the objects for that task when you are on site.

You can configure an entire OPC object hierarchy without connecting to the server. However, without
a connection to the server, the toolbox cannot validate the created objects with that server. Instead,
the toolbox performs some basic validation on the objects you create, and revalidates those objects
with the server when you connect.

When you create toolbox objects with a disconnected client, the following validation is performed:

• When adding a group using the addgroup function, if you do not specify a name, the toolbox
assigns a unique name 'groupN', where N is the lowest integer that ensures that the group name
is unique. For example, the first group created will be 'group1', then 'group2', and so on.

• When you specify a group name when using the addgroup function, an error is generated if a
group with the same name already exists.

• When adding an item to a group using the additem function, an error is generated only if an item
with the same name already exists in that group. No other checking is performed on the item.

• When adding an item to a group, if you do not specify a data type for that item, the data type is set
to 'unknown'. When you connect to the server, the data type will be changed to the server item's
CanonicalDataType.

Despite all of the checks described above, the server might not accept all objects created on a
disconnected client when that client is connected to the server using the connect function. For
example, an item's item ID might not be valid for that server, or a group name might not be valid for
that server. When you connect a client to the server using connect, any objects that the server
rejects will be deleted from the object hierarchy, and a warning will be generated. In this way, all
objects on a connected client are guaranteed to have been accepted by the server.

Create OPC Data Access Object Vectors
An object vector is a single variable in the MATLAB workspace containing a reference to more than
one object. For example, all the groups added to an opcda client object are stored in the client Group
property. The Group property contains a dagroup object vector that represents all groups in that
client. Similarly, a dagroup object has an Item property that contains a reference to every daitem
object created in the group.

You can construct vectors using any of the standard concatenation techniques available in MATLAB.
However, Industrial Communication Toolbox imposes some limitations on the construction of object
vectors:

• Objects must be the same class. For example, you can concatenate two dagroup objects, but you
cannot concatenate a dagroup object with a daitem object.

• Group and item objects must have the same parent.
• One of the dimensions of the resulting array must be scalar. You can create a column vector (m-

by-1 objects) or a row vector (1-by-n objects), but not an m-by-n matrix.
• Industrial Communication Toolbox does not fill in missing elements in a vector. Instead, an error is

generated. For example, you cannot assign a scalar object at the 4th index to a scalar object.

6 Using OPC Data Access Objects

6-8

The following sections discuss how to create and use toolbox object vectors:

• “Construct Object Vectors” on page 6-9 describes how to create object vectors.
• “Display a Summary of Object Vectors” on page 6-9 describes how object vectors are displayed

at the command line.
• “Use Object Vectors” on page 6-10 describes how you can use OPC object vectors.

Construct Object Vectors

You can construct an object vector using any of the following techniques:

• Using concatenation of lists of individual object variables
• Using indexed assignment
• Using object properties to retrieve object vectors

Create Object Vectors Using Concatenation

To construct an OPC Data Access object vector using concatenation, use the normal MATLAB syntax
for concatenation. Create a list of all objects you want to create, and surround that list with square
brackets ([]). Separate each element of the object vector by either a comma (,) to create a row
vector, or a semicolon (;) to create a column vector.

The following example creates three fictitious opcda client objects, and concatenates them into a row
vector.

da1 = opcda('Host1','Dummy.Server.1');
da2 = opcda('Host2','Dummy.Server.2');
da3 = opcda('Host3','Dummy.Server.3');
dav = [da1, da2, da3];

Create Object Vectors Using Indexed Assignment

Indexed assignment refers to creating vectors by assigning elements to specific indices in the vector.
The following example constructs the same three-element opcda client object vector as in the
previous example, using indexed assignment.

dav(1) = opcda('Host1','Dummy.Server.1');
dav(2) = opcda('Host2','Dummy.Server.2');
dav(3) = opcda('Host3','Dummy.Server.3');

Create an Object Vector Using Object Properties

You may obtain an object vector if you assign the Group property of a opcda client object, or the
Item property of a dagroup object, to a variable. If the client has more than one group, or the group
has more than one item, the resulting property is an object vector.

For information on obtaining object properties, see “View the Value of a Particular Property” on page
6-14.

Display a Summary of Object Vectors

To view a summary of an object vector, type the name of the object vector at the command prompt.
For example, this is the summary of the client vector dav.

dav

 Create OPC Data Access Objects

6-9

 OPC Data Access Object Array:

 Index: Status: Name:
 1 disconnected Host1/Dummy.Server.1
 2 disconnected Host2/Dummy.Server.2
 3 disconnected Host3/Dummy.Server.3

The summary information for each OPC Data Access object class is different. However, the basic
display is similar.

Use Object Vectors

You use object vectors just as you would a normal object variable. The function you call with the
object vector simply gets applied to all objects in the vector. For example, passing the client vector
dav to the connect function connects each object in the vector to its OPC server.

Note Some functions do not accept object vectors as arguments. If you attempt to use an object
vector with a function that does not accept object vectors, an error is generated. Consult the relevant
function reference page for information on whether a function supports object vectors.

If you need to extract elements of an object vector, use standard MATLAB indexing notation. For
example, the following example extracts the second element from the client vector dav.

dax = dav(2);

Work with Public Groups

The OPC Data Access Specification provides a mechanism for sharing group configuration amongst
many clients. Normally, a client has private access to a group; no other client connected to the same
server can see that group, and the items configured in that group. However, a client can define a
group as public, allowing other clients connected to the same server to gain access to that group.

Note The OPC Data Access Specification defines the support for public groups as optional.
Consequently, some OPC servers will not support public groups.

A public group differs from a private group in the following ways:

• Once a group is defined as public, you cannot add items to that group, nor remove items from the
group. This restriction ensures that every client using that public group has access to the same
items, and does not need to worry about items being added or removed from that group. You
should ensure that a group's items are correct before making that group public.

• Each client that accesses the public group is able to set its own group properties, such as the
UpdateRate, DeadbandPercent, Active, and Subscription properties. For example, one
client can define an UpdateRate of 10 seconds for a public group, while another client specifies
the UpdateRate as 2 seconds.

• Each public group defined on a server must have a unique name. If you attempt to create a public
group with a name that is the same as a public group on the server, an error is generated.

6 Using OPC Data Access Objects

6-10

• A single client cannot have a public group and a private group with the same name. For example,
you cannot connect to a public group named 'LogGroup' and then create a private group called
'LogGroup'.

You can define and publish your own public groups or connect to existing public groups. You an also
request that public groups be removed from an OPC server. The following sections illustrate how you
can work with public groups:

• “Define a New Public Group” on page 6-11 describes how you can create new public groups.
• “Connect to an Existing Public Group” on page 6-11 describes how you can utilise a public group

that is already defined on the server.
• “Remove Public Groups from the Server” on page 6-12 describes how you can remove public

groups from an OPC server.

Define a New Public Group

You define a new public group by creating a private group in the normal way (described in “Create
Data Access Group Objects” on page 6-4) and then converting that private group into a public group.

You use the makepublic function to convert a private group into a public group. The only argument
to the makepublic function is the group object that you want to convert to a public group.

The following example creates a private group, with specific items in that group. The group is then
converted into a public group.

da = opcda('localhost','My.Server.1');
grp = addgroup(da,'PublicGrpExample');
itms = additem(grp,{'Item.ID.1','Item.ID.2'});
makepublic(grp);

You can check the group type using the GroupType property.

grp.GroupType

public

Connect to an Existing Public Group

In addition to creating new public groups, you can also create a connection to an existing public
group on the server. To obtain a list of available public groups on a server, you use the
opcserverinfo function, passing the client object that is connected to the server as the argument.
The returned structure includes a field called 'PublicGroups', containing a cell array of public
groups defined on that server. If the 'PublicGroups' field is empty, then you should check the
'SupportedInterfaces' field to ensure that the server supports public groups. A server that
supports public groups will implement the IOPCServerPublicGroups interface.

Once you have a list of available public groups, you can create a connection to that group using the
addgroup function, passing it the client that is connected to the server containing the public group,
the name of the public group, and the 'public' group type specifier.

Note You cannot create a connection to an existing public group if your client object is disconnected
from the server.

 Create OPC Data Access Objects

6-11

The following example connects to a public group named 'PublicTrends' on the server with
program ID 'My.Server.1'.

da = opcda('localhost','My.Server.1');
connect(da);
pubGrp = addgroup(da,'PublicTrends','public');

When you connect to a public group, the items in that group are automatically created for you.

itm = pubGrp.Items

itm =

 OPC Item Object Array:

 Index: DataType: Active: ItemID:
 1 double on item.id.1
 2 uint16 on item.id.2
 3 double on item.id.3

You cannot add items to or remove items from a public group. However, you can still modify the
update rate of the group, the dead band percent, and the active and subscription status of the group,
and you can use the group to read, write, or log data as you would for a private group.

When you have finished using a public group, you can use the delete function to remove that group
from your client object. Deleting the group from the client does not remove the public group from the
server; other clients might require that group after you have finished with it. Instead, deleting the
group from the client indicates to the server that you are no longer interested in the group.

Remove Public Groups from the Server

You can request that a public group be removed from a server using the removepublicgroup
function, passing the client object that is connected to the server and the name of the public group to
remove.

Caution The OPC Data Access Specification does not provide any security mechanism for removing
public groups; any client can request that a public group be removed. You should use this function
with extreme caution!

If any clients are currently connected to that group, the server will issue a warning stating that the
group will be removed when all clients have finished using the group.

6 Using OPC Data Access Objects

6-12

Configure OPC Data Access Object Properties
In this section...
“Purpose of Object Properties” on page 6-13
“View the Values of Object Properties” on page 6-13
“View the Value of a Particular Property” on page 6-14
“Get Information About Object Properties” on page 6-15
“Set the Value of an Object Property” on page 6-15
“View a List of All Settable Object Properties” on page 6-16

Purpose of Object Properties
All OPC Data Access objects support properties that enable you to control characteristics of the
object:

• The opcda client object properties control aspects of the connection to the OPC server, and event
information obtained from the server. For example, you can use the Timeout property to define
how long to wait for the server to respond to a request from the client.

• The dagroup object properties control aspects of the collection of items contained within that
group, including all logging properties. For example, the UpdateRate property defines how often
the items in the group must be checked for value changes, as well as the rate at which data will be
sent from the server during a logging session.

• The daitem object properties control aspects of a single server item. For example, you use the
DataType property to define the data type that the server must use to send values of that server
item to the toolbox.

For all three toolbox objects, you can use the same toolbox functions to

• View a list of all the properties supported by the object, with their current values
• View the value of a particular property
• Get information about a property
• Set the value of a property

View the Values of Object Properties
To view all the properties of an OPC Data Access object, with their current values, use the get
function.

If you do not specify a return value, the get function displays the object properties in categories that
group similar properties together. Use the display form of the get function to view the value of all
properties for the toolbox object.

This example uses the get function to display a list of all the properties of the OPC dagroup object
grp.

get(grp)

 General Settings:
 DeadbandPercent = 0

 Configure OPC Data Access Object Properties

6-13

 GroupType = private
 Item = []
 Name = group1
 Parent = [1x1 opcda]
 Tag =
 TimeBias = 0
 Type = dagroup
 UpdateRate = 0.5000
 UserData = []

 Callback Function Settings:
 CancelAsyncFcn = @opccallback
 DataChangeFcn = []
 ReadAsyncFcn = @opccallback
 RecordsAcquiredFcn = []
 RecordsAcquiredFcnCount = 20
 StartFcn = []
 StopFcn = []
 WriteAsyncFcn = @opccallback

 Subscription and Logging Settings:
 Active = on
 LogFileName = opcdatalog.olf
 Logging = off
 LoggingMode = memory
 LogToDiskMode = index
 RecordsAcquired = 0
 RecordsAvailable = 0
 RecordsToAcquire = 120
 Subscription = on

View the Value of a Particular Property
To view the value of a particular property of an OPC Data Access object, use the get function,
specifying the name of the property as an argument. You can also access the value of the property as
you would a field in a MATLAB structure.

This example uses the get function to retrieve the value of the Subscription property for the
dagroup object.

get(grp,'Subscription')

ans =

on

This example illustrates how to access the same property by referencing the object as if it were a
MATLAB structure.

grp.Subscription

ans =

on

6 Using OPC Data Access Objects

6-14

Get Information About Object Properties
To get information about a particular property, use thepropinfo or opchelp function.

The propinfo function returns a structure that contains information about the property, such as its
data type, default value, and a list of all possible values if the property supports such a list. This
example uses propinfo to get information about the LoggingMode property.

propinfo(grp,'LoggingMode')

ans =

 Type: 'string'
 Constraint: 'enum'
 ConstraintValue: {'memory' 'disk' 'disk&memory'}
 DefaultValue: 'memory'
 ReadOnly: 'whileLogging'

The opchelp function returns reference information about the property with a complete description.
This example uses opchelp to get information about the LoggingMode property.

opchelp(grp,'LoggingMode')

Set the Value of an Object Property
To set the value of a particular property of an OPC Data Access object, use the set function,
specifying the name of the property as an argument. You can also assign the value to the property as
you would a field in a MATLAB structure.

Note Because some properties are read-only, only a subset of the toolbox object properties can be
set. Use the property reference pages or the propinfo function to determine if a property is read-
only.

This example uses the set function to set the value of the LoggingMode property.

set(grp,'LoggingMode','disk&memory')

To verify the new value of the property, use the get function.

get(grp,'LoggingMode')

ans =

disk&memory

This example sets and views the value of a property by using dot-notation.

grp.LoggingMode = 'disk';
grp.LoggingMode

ans =

disk

 Configure OPC Data Access Object Properties

6-15

View a List of All Settable Object Properties
To view a list of all the properties of a toolbox object that can be set, use the set function.

set(grp)

 General Settings:
 DeadbandPercent
 Name
 Tag
 TimeBias
 UpdateRate
 UserData

 Callback Function Settings:
 CancelAsyncFcn: character vector -or- function handle -or- cell array
 DataChangeFcn: character vector -or- function handle -or- cell array
 ReadAsyncFcn: character vector -or- function handle -or- cell array
 RecordsAcquiredFcn: character vector -or- function handle -or- cell array
 RecordsAcquiredFcnCount
 StartFcn: character vector -or- function handle -or- cell array
 StopFcn: character vector -or- function handle -or- cell array
 WriteAsyncFcn: character vector -or- function handle -or- cell array

 Subscription and Logging Settings:
 Active: [{on} | off]
 LogFileName
 LoggingMode: [{memory} | disk | disk&memory]
 LogToDiskMode: [{index} | append | overwrite]
 RecordsToAcquire
 Subscription: [{on} | off]

When using the set function to display a list of settable properties, all properties that have a
predefined set of acceptable values list those values after the property. The default value is enclosed
in curly braces ({}). For example, from the display shown above, you can set the Subscription
property for a dagroup object to 'on' or 'off', with the default value being 'on'. You can set the
LogFileName property to any value.

Special Read-Only Modes

Some OPC Data Access object properties change their read-only status, depending on the state of an
object (defined by another property of that object, or the parent of that object). The toolbox uses two
special read-only modes:

• 'whileConnected': These properties cannot be changed while the client is connected to the
OPC server. For example, the client's Host property is read-only while connected.

• 'whileLogging': These properties cannot be changed while the dagroup object is logging. For
example, the LoggingMode property is read-only while logging. For more information on logging,
see “Log OPC Server Data” on page 7-11.

• 'whilePublic': These properties cannot be changed because the group is a public group. For
more information on public groups, see “Work with Public Groups” on page 6-10.

Note Properties that modify their read-only state are always displayed when using set to display
settable properties, even when they cannot be changed because of the state of the object.

To determine if a property has a modifiable read-only state, use the propinfo function.

6 Using OPC Data Access Objects

6-16

See Also
Properties
opcda Object Properties Properties | dagroup Object Properies Properties | daitem Object Properties
Properties

 Configure OPC Data Access Object Properties

6-17

Delete Objects
When you finish using your OPC Data Access objects, use the delete function to remove them from
memory. After deleting them, clear the variables that reference the objects from the MATLAB
workspace by using the clear function.

Note When you delete an opcda client object, all the group and item objects associated with the
opcda client object are also deleted. Similarly, when you delete a dagroup object, all daitem objects
associated with that dagroup object are deleted.

To illustrate the deletion process, this example creates several opcda client objects and then deletes
them.

Step 1: Create several clients

This example creates several opcda client objects using fictitious host and server ID properties.

da1 = opcda('Host1','Dummy.Server.1');
da2 = opcda('Host2','Dummy.Server.2');
da3 = opcda('Host3','Dummy.Server.3');

Step 2: Delete clients

Always remove toolbox objects from memory, and the variables that reference them, when you no
longer need them.

You can delete toolbox objects using the delete function.

delete(da1)
delete(da2)
delete(da3)

Note that the variables associated with the objects remain in the workspace.

whos

 Name Size Bytes Class

 da1 1x1 636 opcda object
 da2 1x1 636 opcda object
 da3 1x1 636 opcda object

These variables are not valid OPC Data Access objects.

isvalid(da1)

ans =
 0

To remove these variables from the workspace, use the clear command.

Note You can delete toolbox object vectors using the delete function. You can also delete individual
elements of a toolbox object vector.

6 Using OPC Data Access Objects

6-18

See Also
Functions
clear | delete | opcreset | isvalid

 Delete Objects

6-19

Save and Load Objects
Using the save command, you can save an OPC Data Access object to a MAT-file, just as you would
any workspace variable. This example saves the dagroup object grp to the MAT-file myopc.mat.

save myopc grp

When you save a toolbox object, all the toolbox objects in that object hierarchy are also saved. For
example, if you save a dagroup object, the client, all groups associated with that client and all items
created in those groups are saved along with the dagroup object. However, only those objects you
elect to save will be created in the MATLAB workspace. Other objects will be created with no
reference to them in the workspace. To obtain a reference to an existing OPC Data Access object, use
the opcfind function.

To load a toolbox object that was saved to a MAT-file into the MATLAB workspace, use the load
command. For example, to load grp from MAT-file myopc.mat, use

load myopc

Note The values of read-only properties are not saved. When you load a toolbox object into the
MATLAB workspace, read-only properties revert back to their default values. To determine if a
property is read-only, use the propinfo function.

See Also
Functions
copyobj | opcfind | save | load

6 Using OPC Data Access Objects

6-20

Reading, Writing, and Logging OPC Data

The core of any OPC application is the exchange of data between the MATLAB workspace and one or
more OPC servers. You create and configure toolbox objects to support the reading, writing, and data
logging functions that you require for your application.

You can exchange data with an OPC server in a number of ways. You can read and write data from the
MATLAB command line or other MATLAB functions. You can configure toolbox OPC objects to
automatically run MATLAB code when the server notifies the objects that data has changed on the
server. You can also log changes in OPC server data to a disk file or to memory for further analysis.

This chapter provides information on how to exchange data with an OPC server.

• “Read and Write Data on OPC DA Server” on page 7-2
• “Data Change Events and Subscription” on page 7-8
• “Log OPC Server Data” on page 7-11

7

Read and Write Data on OPC DA Server
In this section...
“Introduction to Reading and Writing” on page 7-2
“Read Data from an Item” on page 7-2
“Write Data to an Item” on page 7-4
“Read and Write Multiple Values” on page 7-6

Introduction to Reading and Writing
You can exchange data with the OPC DA server using individual items, or using the dagroup object
to perform the operation on multiple items. The reading and writing operation can be performed
synchronously, so that your MATLAB session waits for the operation to complete, or asynchronously,
allowing your MATLAB session to continue processing while the operation takes place in the
background.

Read Data from an Item
You can read data from any item that is associated with a connected client. When you perform the
read operation on an item, the server will return information about the server item associated with
that item ID. The read operation can be performed synchronously or asynchronously:

• “Use Synchronous Read Operations” on page 7-2 describes how to perform synchronous read
operations. Synchronous read operations can request data from the server's cache, or directly
from the device.

• “Use Asynchronous Read Operations” on page 7-4 describes how to perform asynchronous read
operations.

Use Synchronous Read Operations

A synchronous read operation means that MATLAB waits for the server to return data from a read
request before continuing processing. The data returned by the server can come from the server's
cache, or you can request that the server read values from the device that the server item refers to.

You use the read function to perform synchronous read operations, passing the daitem object
associated with the server item you want to read. If the read operation is successful, the data is
returned in a structure containing information about the read operation, including the value of the
server item, the quality of that value, and the time that the server obtained that value. The item's
Value, Quality and Timestamp properties are also updated to reflect the values obtained from the
read operation.

The following example creates an opcda client object and configures a group with one item,
'Random.Real8'. A synchronous read operation is then performed on the item.

da = opcda('localhost','Matrikon.OPC.Simulation.1');
connect(da);
grp = addgroup(da);
itm1 = additem(grp,'Random.Real8');
r = read(itm1)

r =

7 Reading, Writing, and Logging OPC Data

7-2

 ItemID: 'Random.Real8'
 Value: 4.3252e+003
 Quality: 'Good: Non-specific'
 TimeStamp: [2004 3 2 9 50 26.6710]
 Error: ''

Specify the Source of the Read Operation

By default, a synchronous read operation will return data from the OPC server's cache. By reading
from the cache, you do not have to wait for a possibly slow device to provide data to the server. You
can specify the source of the synchronous read operation as the second parameter to the read
function. If the source is specified as 'device', the server will read a value from the device, and
return that value to you (as well as updating the server cache with that value).

Note Reading from the device may be slow. If the read operation generates a time-out error, you may
need to increase the value of the Timeout property of the opcda client object associated with the
group or item in order to support synchronous reads from the device.

The following example reads data from the device associated with itm1.

r = read(itm1,'device')

r =

 ItemID: 'Random.Real8'
 Value: 9.1297e+003
 Quality: 'Good: Non-specific'
 TimeStamp: [2004 3 2 10 8 20.2650]
 Error: ''

Read from the Cache with Inactive Items

In order to reduce communication traffic and speed up data access, OPC servers do not store all
server item values in their cache. Only those server items that are active will be stored in the server
cache. Therefore, synchronous read operations from the cache on an inactive item will return data
that may not correspond to the current device value. If you attempt to read data from an inactive item
using the read function, and do not specify 'device' as the source, the Quality will be set to
'Bad: Out of Service'.

You control the active status of an item using the Active property.

The following example sets the Active property of the item to 'off' and attempts to read from the
cache.

itm1.Active = 'off';
r = read(itm1)

Warning: One or more items is inactive.
(Type "warning off opc:read:iteminactive" to suppress this
warning.)

r =

 ItemID: 'Random.Real8'
 Value: 8.4278e+003
 Quality: 'Bad: Out of Service'

 Read and Write Data on OPC DA Server

7-3

 TimeStamp: [2004 3 2 10 17 19.9370]
 Error: ''

Use Asynchronous Read Operations

An asynchronous read operation creates a request to read data, and then sends that request to the
server. Once the request has been accepted, MATLAB continues processing the next instruction
without waiting to receive any values from the server. When the data is ready to be returned, the
server sends the data back to MATLAB by generating a read async event. MATLAB will handle that
event as soon as it is able to perform that task.

Asynchronous read operations always return data from the device.

By using an asynchronous read operation, you can continue performing tasks in MATLAB while the
value is being read from the device, and then process the returned value when the server is able to
provide it back to MATLAB.

You perform asynchronous read operations using the readasync function, passing the daitem object
that you want to read from. If successful, the function will return a transaction ID, a unique identifier
for that asynchronous transaction. You can use that transaction ID to identify the read operation
when it is returned through the read async event.

When an asynchronous read operation is processed in MATLAB, the item's Value, Quality and
Timestamp properties are also updated to reflect the values obtained from the asynchronous read
operation.

The following example of using an asynchronous read operation uses the default callback for a read
async event. The default callback is set to the opccallback function, which displays information
about the event in the command line.

tid = readasync(itm1)

tid =

 3

The transaction ID for this operation is 3. A little while later, the default callback function displays the
following information at the command line.

OPC ReadAsync event occurred at local time 10:44:49
 Transaction ID: 3
 Group Name: Group0
 1 items read.

You can change the read async event callback function by setting the ReadAsyncFcn property of the
dagroup object.

Write Data to an Item
You can write data to individual items, or to groups of items. This section describes how to write data
to individual items. See “Read and Write Multiple Values” on page 7-6 for information on using
dagroup objects to write data to multiple items.

You can write data to an OPC server using a synchronous write operation, in which case MATLAB will
wait for the server to acknowledge that the write operation succeeds, or using an asynchronous write

7 Reading, Writing, and Logging OPC Data

7-4

operation, in which case MATLAB is free to continue performing other tasks while the write operation
takes place. Because write operations always apply directly to the device, a synchronous write
operation may take a significant amount of time, particularly if the device that you are writing to has
a slow connection to the OPC server.

Use Synchronous Write Operations

You use the write function to perform synchronous write operations. The first argument is the
daitem object that represents the server item you want to write to. The second argument is the value
that you want to write to that server item. The write function does not return any results, but will
generate an error if the write operation is not successful.

The following example creates an item with item ID 'Bucket Brigade.Real8' and writes the value
10.34 to the item. The value is then read using a synchronous read operation.

itm2 = additem(grp,'Bucket Brigade.Real8');
write(itm2, 10.34)
r = read(itm2,'device')

You do not need to ensure that the data type of the value you are writing, and the data type of the
daitem object, are the same. Industrial Communication Toolbox relies on the server to perform the
conversion from the data type you provide, to the data type required for that server item. For
information on how the toolbox handles different data types, see “Work with Different Data Types” on
page 8-13.

Use Asynchronous Write Operations

An asynchronous write operation creates a request to write data, and then sends that request to the
server. Once the request has been accepted, MATLAB continues processing the next instruction
without waiting for the data to be written. When the write operation completes on the server, the
server notifies MATLAB that the operation completed by generating a write async event containing
information on whether the write operation succeeded, and an error message if applicable. MATLAB
will handle that event as soon as it is able to perform that task.

You use the writeasync function to write values to the server asynchronously. The first argument is
the daitem object that represents the server item you want to write to. The second argument is the
value you want to write to that server item. The return value is the transaction ID of the operation.
You can use the transaction ID to identify the write operation when it is returned through the write
async event.

The following example uses asynchronous operations to write the value 57.8 to the item 'Bucket
Brigade.Real8' created earlier.

tid = writeasync(itm2, 57.8)

tid =

 4

A while later, the standard callback (opccallback) will display the results of the write operation to
the command line.

OPC WriteAsync event occurred at local time 11:15:27
 Transaction ID: 4
 Group Name: Group0
 1 items written.

 Read and Write Data on OPC DA Server

7-5

You can change the write async event callback function by setting the WriteAsyncFcn property of
the dagroup object.

Read and Write Multiple Values
When you use the read and write operation on a single daitem object, you read or write a single
value per transaction. Industrial Communication Toolbox allows you to perform one operation to read
multiple item values, or to write multiple values. You can also use a dagroup object to read and write
values using all items in the group, or you can perform read and write operations on item object
vectors.

A daitem object vector is a single variable in the MATLAB workspace containing more than one
daitem object. You can construct item vectors using any of the standard concatenation techniques
available in MATLAB. See “Create OPC Data Access Object Vectors” on page 6-8 for information on
creating and working with toolbox object vectors.

When you perform any read or write operation on a dagroup object, it is the equivalent of
performing the operation on the Item property of that group, which is a daitem object vector
representing all items that are contained within the dagroup object.

The following sections describe how to perform read and write operations on multiple items:

• “Read Multiple Values” on page 7-6 describes how to read multiple values from an item vector
or dagroup object.

• “Write Multiple Values” on page 7-7 describes how to write multiple values to an item vector or
dagroup object.

• “Error Handling for Multiple Item Read and Write Operations” on page 7-7 explains errors
when performing read and write operations on multiple objects.

Read Multiple Values

The following sections describe how synchronous read operations and asynchronous read operations
behave for multiple items.
Synchronous Read Operations

When you read multiple values using the read function, the returned value will be a structure array.
Each element of the structure will contain the same fields. One of the fields is the item ID that the
information in that element of the structure refers to.

The following example performs a synchronous read operation on the dagroup object created in the
previous examples in this section.

r = read(grp)

r =

2x1 struct array with fields:
 ItemID
 Value
 Quality
 TimeStamp
 Error

To display the first record in the structure array, use indexing into the structure.

7 Reading, Writing, and Logging OPC Data

7-6

r(1)

ans =

 ItemID: 'Random.Real8'
 Value: 3.7068e+003
 Quality: 'Good: Non-specific'
 TimeStamp: [2004 3 2 11 49 52.5460]
 Error: ''

To display all values of a particular field, you can use the list generation syntax in MATLAB. Enclosing
that list in a cell array groups the values into one variable.

{r.Value}

ans =

 {3.7068e+003 10}

Asynchronous Read Operations

When you read multiple values using the readasync function, the return value is still a single
transaction ID. The multiple values will be returned in the read async event structure passed to the
ReadAsyncFcn callback. For information on the structure of the read async event, see “Event Types”
on page 9-4.

Write Multiple Values

When you perform a write operation on multiple items you need to specify multiple values, one for
each item you are writing to. These multiple values must be in a cell array, because the data types for
each value might be different.

Note Even if you are using the same data type for every value being written to the dagroup object
or daitem object vector, you must still use a cell array to specify the individual values. Use the
num2cell function to convert numeric arrays to cell arrays.

The following example writes values to a dagroup object containing two items.

write(grp, {1.234, 5.43})

Error Handling for Multiple Item Read and Write Operations

When reading and writing with multiple items, an error generated by performing the operation on
one item will not automatically generate an error in MATLAB. The following rules apply to reading
and writing with multiple items:

• If all items fail the operation, an error will be generated. The error message will contain specific
information for each item about why the item failed.

• If some items fail but some succeed, the operation does not error, but generates a warning, listing
which items failed and the reason for failure.

Note that for asynchronous read and write operations, items may fail early (during the request for the
operation) or late (when the information is returned from the server). If any items fail late, an error
event will be generated in addition to the read async event or write async event.

 Read and Write Data on OPC DA Server

7-7

Data Change Events and Subscription
In this section...
“Introduction to Data Change Events” on page 7-8
“Configure OPC Objects for Data Change Events” on page 7-8
“How Data Change Events are Processed” on page 7-9
“Customize the Data Change Event Response” on page 7-10

Introduction to Data Change Events
Using the read and readasync functions described in “Read Data from an Item” on page 7-2, you
can obtain information about OPC server item values upon request. The OPC Data Access
specification provides another mechanism for clients to get information on server item values. This
mechanism allows the OPC server to notify a client when a server item value or quality has updated.
This mechanism is called a data change event. Industrial Communication Toolbox supports data
change event notification by executing a MATLAB function when a data change event is received from
a connected OPC server. This section describes how to use the data change event notification.

Configure OPC Objects for Data Change Events
A data change event occurs at the dagroup object level. Using dagroup object properties, you can
control whether a data change event is generated for a particular group, the minimum time between
successive events, and the MATLAB function to run when the event notification is received and
processed by Industrial Communication Toolbox. You can also control which items in a particular
group should be monitored for data changes. In this way, you can control the number and frequency
of data change events that MATLAB has to process. On a busy OPC server, you can also turn off data
change notification for groups that you are not currently interested in.

The following sections describe how to control data change notification.

• “Control Data Change Notification for a Group” on page 7-8 describes how to turn off data
change notification for a dagroup object.

• “Temporarily Disable Items in a Group” on page 7-9 describes how to control which items in a
group must be monitored for data changes.

• “Customize the Data Change Event Response” on page 7-10 provided information on how to
configure the MATLAB function to run when a data change event occurs.

Control Data Change Notification for a Group

The following properties of a dagroup object control whether a server notifies the group of data
changes on items in that group:

• UpdateRate: The UpdateRate property defines the rate at which an OPC server must monitor
server item values and generate data change events. Even if a server item's value changes more
frequently than the update rate, the OPC server will only generate a data change at the interval
specified by the update rate.

• Subscription: The Subscription property defines whether the OPC server will generate a data
change event for the group. When you create a dagroup object, the Subscription property is
set to 'on'. When you set the Subscription property to 'off', you tell the OPC server not to
generate data change events for that group.

7 Reading, Writing, and Logging OPC Data

7-8

• Active: The Active property must be 'on' for data change events to be generated. When you
create a dagroup object, the Active property is set to 'on'. When you set the Active property
to 'off', you remove any ability to read data from the group, whether through read operations or
data change events.

A summary of group read, write, and data change behavior for the Active and Subscription properties
is given in the following table.

Active Subscription Read Write Data Change
'on' 'on' Yes Yes Yes
'on' 'off' Yes Yes No
'off' 'on' No No No
'off' 'off' No No No

Temporarily Disable Items in a Group

You can temporarily disable items in a group without deleting the item from the group. When you
disable a daitem object, the OPC server no longer monitors changes in the associated server item's
value, and will therefore not generate data change events when the value of that server item
changes.

You can disable a daitem object by setting that object's Active property to 'off'. You can reenable
the daitem object by setting the Active property to 'on'.

Force a Data Change Event

You can force an OPC server to generate a data change event for all active items in a group by using
the refresh function with the dagroup object as the first argument. The OPC server will generate a
data change event containing information for every active item in the group.

You can pass an optional second argument to the refresh function to instruct the OPC server where
to source the data values that are sent back in the data change event. By specifying a source of
'device', you instruct the OPC server to update the values from the device. By specifying a source
of 'cache' (the default) you instruct the OPC server to return values from the OPC server's cache.

How Data Change Events are Processed
Industrial Communication Toolbox software uses data change events for a number of tasks. The
following activities take place when a data change event occurs:

1 The Value, Quality, and TimeStamp properties of the daitem object are automatically updated.
For more information on these properties, see “OPC Data: Value, Quality, and TimeStamp” on
page 8-2.

2 If the dagroup object is logging, the data change event is logged to memory and/or disk as a
record. For information on logging, see “Log OPC Server Data” on page 7-11.

3 If the dagroup object's DataChangeFcn property is not empty, that function is called with the
data change event information. By default, this property is empty, since data change events occur
frequently. You can customize the behavior of the toolbox by setting this property to call a
function that you choose. For information on the data change event, see the reference page for
the DataChangeFcn property.

 Data Change Events and Subscription

7-9

Note If you disable data change events by setting the Subscription property to 'off' or the
Active property to 'off', none of the activities listed above can take place. You cannot change
the Active or Subscription properties while a dagroup object is logging, otherwise the
logging task may never complete.

Customize the Data Change Event Response
One of the activities that occurs when Industrial Communication Toolbox software receives a data
change event from the OPC server is the running of the function defined in the DataChangeFcn
property. By setting this property to a the name of a function that you have written, you can fully
customize the data change event behavior of the toolbox. For example, you may configure a dagroup
object to monitor a server item that is updated from an operator interface. By pushing a button on the
operator interface, the server item value will change, initiating a data change event on that group. By
configuring the DataChangeFcn property to run a MATLAB function that performs control loop
optimization, you can allow an operator to initiate a control loop performance test on all critical
control loops in the plant.

7 Reading, Writing, and Logging OPC Data

7-10

Log OPC Server Data
In this section...
“How Data Is Logged” on page 7-11
“Configure a Logging Session” on page 7-13
“Execute a Logging Task” on page 7-15
“Get Logged Data into the MATLAB Workspace” on page 7-16

How Data Is Logged
The OPC Data Access Specification provides access to current values of data on an OPC server. Often,
for analysis, troubleshooting, and prototyping purposes, you will want to know how OPC server data
has changed over a period of time. For example, you can use time series data to perform control loop
optimization or system identification on a portion of your plant. Industrial Communication Toolbox
software provides a logging mechanism that stores a history of data that changed over a period of
time. This section discusses how to configure and execute a logging task using the toolbox.

Note The toolbox software logging mechanism is not designed to replace a data historian or
database application that logs data for an extended period. Rather, the logging mechanism allows you
to quickly configure a task to log data on an occasional basis, where modifications to the plant-wide
data historian may be unfeasible.

Industrial Communication Toolbox software uses the data change event to log data. Each data change
event that is logged is called a record. The record contains information about the time the client
logged the record, and details about each item in the data change event. Data change events are
discussed in detail in “Data Change Events and Subscription” on page 7-8.

The use of a data change event for logging means that you should consider the following points when
planning a logging session:

• Logging takes place at the group level — When planning a logging task, configure the group
with only the items you need to log. Including more items than you need to will only increase
memory and/or disk usage, and using that data may be more difficult due to unnecessary items in
the data set.

• Inactive items in a group will not be logged — You must ensure that the items you need to log
are active when you start a logging session. You control the active state of a daitem object using
the Active property of the daitem object.

• Data change events (records) may not include all items — A data change event contains only
the items in the group that have changed their value and/or quality state since the last update.
Hence, a record is not guaranteed to contain every data item. You need to consider this when
planning your logging session.

• OPC logging tasks are not guaranteed to complete — Because data change events only
happen when an item in the group changes state on the server, it is possible to start a logging task
that will never finish. For example, if the items in a group never change, a data change event will
never be generated for that group. Hence, no records will be logged.

• Logged data is not guaranteed to be regularly sampled — It is possible to force a data
change event at any time (see “Force a Data Change Event” on page 7-9). If you do this during a

 Log OPC Server Data

7-11

logging task, the data change events may occur at irregular sample times. Also, a data change
event may not contain information for every item in the group. Consequently, logged OPC server
data may not occur at regular sample times.

An overview of the logging task, and a representation of how the above points impact the logging
session, is provided in the following section.

Overview of a Logging Task

To illustrate a typical logging task, the following example logs to disk and memory six records of data
from two items provided by the Matrikon OPC Simulation Server. During the logging task, data is
retrieved from memory. When the task stops, the remaining records are retrieved.
Step 1: Create the OPC object hierarchy

This example creates a hierarchy of OPC objects for two items provided by the Matrikon Simulation
Server. To run this example on your system, you must have the Matrikon Simulation Server installed.
Alternatively, you can replace the values used in the creation of the objects with values for a server
you can access.

da = opcda('localhost','Matrikon.OPC.Simulation.1');
connect(da);
grp = addgroup(da,'CallbackTest');
itm1 = additem(grp,'Triangle Waves.Real8');
itm2 = additem(grp,'Saw-Toothed Waves.Boolean');

Step 2: Configure the logging duration

This example sets the UpdateRate value to 1 second, and the RecordsToAcquire property to 6.
See “Control the Duration of a Logging Session” on page 7-13 for more information on this step.

grp.UpdateRate = 1;
grp.RecordsToAcquire = 6;

Step 3: Configure the logging destination

In this example, data is logged to disk and memory. The disk filename is set to
LoggingExample.olf. The LogToDiskMode property is set to 'overwrite', so that if the filename
exists, the toolbox engine must overwrite the file. See “Control the Logged Data Destination” on page
7-14 for more information on this step.

grp.LoggingMode = 'disk&memory';
grp.LogFileName = 'LoggingExample.olf';
grp.LogToDiskMode = 'overwrite';

Step 4: Start the logging task

Start the dagroup object. The logging task is started, and the group summary updates to reflect the
logging status. See “Start a Logging Task” on page 7-15 for more information on this step.

start(grp)
grp

Step 5: Monitor the Logging Progress

After about 3 seconds, retrieve and show the last acquired value. After another second, obtain the
first two records during the logging task. Then wait for the logging task to complete. See “Monitor
the Progress of a Logging Task” on page 7-15 for more information on this step.

7 Reading, Writing, and Logging OPC Data

7-12

pause(3.5)
sPeek = peekdata(grp, 1);
% Display the local event time, item IDs and values
disp(sPeek.LocalEventTime)
disp({sPeek.Items.ItemID;sPeek.Items.Value})
pause(1)
sGet = getdata(grp, 2);
wait(grp)

Step 6: Retrieve the data

This example retrieves the balance of the records into a structure array. See “Retrieve Data from
Memory” on page 7-17 for more information on this step.

sFinished = getdata(grp,grp.RecordsAvailable);

Step 7: Clean up

When you no longer need them, always remove from memory any toolbox objects and the variables
that reference them. Deleting the opcda client object also deletes the group and daitem objects.

disconnect(da)
delete(da)
clear da grp itm1 itm2

Configure a Logging Session
A logging session is associated with a dagroup object. Before you start a logging session, you will
need to ensure that the logging session is correctly configured. This section explains how you can
control

• The duration of a logging session (see “Control the Duration of a Logging Session” on page 7-13).
By default, a group will log approximately one minute of data at half second intervals.

• The destination of logged data (see “Control the Logged Data Destination” on page 7-14). By
default, a group will log data to memory.

• The response to events that take place during a logging session (see “Configure Logging
Callbacks” on page 7-15). By default, a logging session takes no action in response to events that
take place during a logging session.

Control the Duration of a Logging Session

While you cannot guarantee that a logging session will take a specific amount of time (see “How Data
Is Logged” on page 7-11), you can control the rate at which the server will update the items and how
many records the logging task should store before automatically stopping the logging task. You
control these aspects of a logging task by using the following properties of the dagroup object:

• UpdateRate: The UpdateRate property defines how often the item values are inspected.
• RecordsToAcquire: The RecordsToAcquire property defines how many records the toolbox must

log before automatically stopping a logging session. A logging task can also be stopped manually,
using the stop function.

• DeadbandPercent: The DeadbandPercent property does not control the duration of a logging
task directly, but has a significant influence over how often a data change event is generated for
analog items (an item whose value is not confined to discrete values). By setting the
DeadbandPercent property to 0, you can ensure that a data change event occurs each time a
value changes. For more information on DeadbandPercent, consult the property reference page.

 Log OPC Server Data

7-13

You can use the UpdateRate and RecordsToAcquire properties to define the minimum duration of
a logging task. The duration of a logging task is at least

UpdateRate * RecordsToAcquire

For example, if the UpdateRate property is 10 (seconds) and the RecordsToAcquire property is
360, then provided that a data change event is generated each time the server queries the item
values, the logging task will take 3600 seconds, or one hour, to complete.

Control the Logged Data Destination

Industrial Communication Toolbox software allows you to log data to memory, to a disk file, or both
memory and a disk file. When logging data to memory, you can log only as much data as will fit into
available memory. Also, if you delete the dagroup object that logged the data without extracting that
data to the MATLAB workspace, the data will be lost. The advantage of logging data to memory is
that logging to memory is faster than using a disk file.

Logging data to a disk file usually means that you can log more data, and the data is not lost if you
quit MATLAB or delete the dagroup object that logged the data. However, reading data from a disk
file is slower than reading data from memory.

The LoggingMode property of a dagroup object controls where logged data is stored. You can specify
'memory' (the default value), or 'disk', or 'disk&memory' as the value for LoggingMode.

The following properties control how the toolbox logs data to disk. You must set the LoggingMode
property to 'disk' or 'disk&memory' for these properties to take effect:

• LogFileName: The LogFileName property is a character vector that specifies the name of the
disk file that is used to store logged data. If the file does not exist, data will be logged to that
filename. If the file does exist, the LogToDiskMode property defines how the toolbox behaves.

• LogToDiskMode: The LogToDiskMode property controls how the toolbox handles disk logging
when the file specified by LogFileName already exists. Each time a logging task is started, if the
LoggingMode is set to 'disk' or 'disk&memory', the toolbox checks to see if a file with the
name specified by the LogFileName property exists. If the file exists, the toolbox will take the
following action, based on the LogToDiskMode property:

• 'append': When LogToDiskMode is set to 'append', logged data will be added to the
existing data in the file.

• 'overwrite': When LogToDiskMode is set to 'overwrite', all existing data in the file will
be removed without warning, and new data will be logged to the file.

• 'index': When LogToDiskMode is set to 'index', the toolbox automatically changes the log
filename, according to the following algorithm:

The first log filename attempted is specified by the initial value of LogFileName.

If the attempted filename exists, LogFileName is modified by adding a numeric identifier. For
example, if LogFileName is initially specified as 'groupRlog.olf', then groupRlog.olf is
the first attempted filename, groupRlog01.olf is the second filename, and so on. If
LogFileName already contains numeric characters, they are used to determine the next
sequence in the modifier. For example, if the LogFileName is initially specified as
'groupRlog010.olf', and groupRlog010.olf exists, the next attempted file is
groupRlog011.olf, and so on.

7 Reading, Writing, and Logging OPC Data

7-14

The actual filename used is the first filename that does not exist. In this way, each consecutive
logging operation is written to a different file, and no previous data is lost.

Configure Logging Callbacks

You can configure the dagroup object so that MATLAB will automatically execute a function when
the logging task starts, when the logging task stops, and each time a specified number of records is
acquired during a logging task. The dagroup object has three callback properties that are used
during a logging session. Each callback property defines the action to take when a particular logging
event occurs:

• Start event: A start event is generated when a logging task starts.
• Records acquired event: A records acquired event is generated each time a logging task

acquires a set number of records.
• Stop event: A stop event is generated when a logging task stops, either automatically, or by the

user calling the stop function.

For an example of using callbacks in a logging task, see “View Recently Logged Data” on page 9-15.

Execute a Logging Task
Once you have configured your logging task you can execute the task. Executing a logging task
involves starting the logging task, monitoring the task progress, and stopping the logging task.

Start a Logging Task

You start a logging task by calling the start function, passing the dagroup object that you want to
start logging. The following example starts a logging task for the dagroup object grp.

start(grp)

When you start a logging task, certain group and item properties become read-only, as modifying
these properties during a logging task would corrupt the logging process. Also, the dagroup object
performs the following operations:

1 Generates a start event and executes the StartFcn callback.
2 If Subscription is 'off', sets Subscription to 'on' and issues a warning.
3 Removes all records associated with the object from the toolbox engine.
4 Sets RecordsAcquired and RecordsAvailable to 0.
5 Sets the Logging property to 'on'.

Monitor the Progress of a Logging Task

During a logging task, you can monitor the progress of the task by examining the following properties
of the dagroup object:

• Logging: The Logging property is set to 'on' at the start of a logging task, and set to 'off'
when the logging task stops.

• RecordsAcquired: The RecordsAcquired property contains the number of records that have
been logged to the destination specified by the LoggingMode property. When a start function is
called, RecordsAcquired is set to 0. When RecordsAcquired reaches RecordsToAcquire,
the logging task stops automatically.

 Log OPC Server Data

7-15

• RecordsAvailable: The RecordsAvailable property contains the number of records that have
been stored in the toolbox engine for this logging task. Data is only logged to memory if the
LoggingMode is set to 'memory' or 'disk&memory'. You extract data from the toolbox engine
using the getdata function. See “Get Logged Data into the MATLAB Workspace” on page 7-16
for more information on using getdata.

You can monitor these properties in the summary display of a dagroup object, by typing the name of
the dagroup object at the command line.

grp

grp =
Summary of OPC Data Access Group Object: group1
 Object Parameters
 Group Type : private
 Item : 1-by-1 daitem object
 Parent : localhost/Matrikon.OPC.Simulation.1
 Update Rate : 0.5
 Deadband : 0%
 Object Status
 Active : on
 Subscription : on
 Logging : on
 Logging Parameters
 Records : 120
 Duration : at least 60 seconds
 Logging to : disk
 Log File : group1log.olf ('index' mode)
 Status : 5 records acquired since starting.
 0 records available for GETDATA/PEEKDATA

Stop a Logging Task

A logging task stops when one of the following conditions is met:

• The number of records logged reaches the value defined by the RecordsToAcquire property.
• You manually stop the logging task by using the stop function.

The following example manually stops the logging task for dagroup object grp.

stop(grp)

When a logging task stops, the Logging property is set to 'off', a stop event is generated, and the
StopFcn callback is executed.

Get Logged Data into the MATLAB Workspace
Industrial Communication Toolbox software does not log data directly to the MATLAB workspace.
When logging to memory, the data is buffered in the toolbox engine in a storage-efficient way. When
logging to disk, the data is logged in ASCII format. To analyze your data, you need to extract the data
from the toolbox engine or from a disk file into MATLAB for processing. This section describes how to
get your logged data into the MATLAB workspace. The following sections describe this process:

• “Retrieve Data from Memory” on page 7-17, discusses how to retrieve data from the toolbox
engine into MATLAB.

7 Reading, Writing, and Logging OPC Data

7-16

• “Retrieve Data from Disk” on page 7-18, discusses how to retrieve data from a disk file into
MATLAB.

Whether you log data to memory or to disk, you can retrieve that logged data in one of two formats:

• Structure format: This format stores each data change event in a structure. Data from a logging
task is simply an array of such structures.

• Array format: To visualize and analyze your data, you will need to work with the time series of
each of the items in the group. The array format is the logged structure data, “unpacked” into
separate arrays for the Value, Quality, and TimeStamp.

Retrieve Data from Memory

You retrieve data from memory using the getdata function, passing the dagroup object as the first
argument, and the number of records you want to retrieve as the second argument. The data is
returned as a structure containing data from each data change event in the logging task. For
example, to retrieve 20 records for the dagroup object grp:

s = getdata(grp, 20);

If you do not supply a second argument, getdata will try to retrieve the number of records specified
by the RecordsToAcquire property of the dagroup object. If the toolbox engine contains fewer
records for the group than the number requested, a warning is generated and all of the available
records will be retrieved.

To retrieve data in array format, you must indicate the data type of the returned values. You pass a
character vector defining that data type as an additional argument to the getdata function. Valid
data types are any MATLAB numeric data type (for example, 'double' or 'uint32') plus 'cell' to
denote the MATLAB cell array data type.

When you specify a numeric data type or cell array as the data type for getdata, the logged data is
returned in separate arrays for the item IDs logged, the value, quality, time stamp, and the local event
time of each data change event logged. You must therefore specify up to five output arguments for
the getdata function when retrieving data in array format.

For example, to retrieve 20 records of logged data in double array format from dagroup object grp.

[itmID,val,qual,tStamp,evtTime] = getdata(grp,20,'double');

Once you have retrieved data to the MATLAB workspace using getdata, the records are removed
from the toolbox engine to free up memory for additional logged records. If you specify a smaller
number of records than those available in memory, getdata will retrieve the oldest records. You can
use the RecordsAvailable property of the dagroup object to determine how many records the toolbox
engine has stored for that group.

During a logging task, you can examine the most recently acquired records using the peekdata
function, passing the dagroup object as the first argument, and the number of records to retrieve as
the second argument. Data is returned in a structure. You cannot return data into separate arrays
using peekdata. You can convert the structure returned by peekdata into separate arrays using the
opcstruct2array function. Data retrieved using peekdata is not removed from the toolbox engine.

For an example of using getdata and peekdata during a logging task, see “Overview of a Logging
Task” on page 7-12.

 Log OPC Server Data

7-17

When you delete a dagroup object, the data stored in the toolbox engine for that object is also
deleted.

Retrieve Data from Disk

You can retrieve data from a disk file into the MATLAB workspace using the opcread function. You
pass the name of the file containing the logged OPC data as the first argument. The data stored in the
log file is returned as a structure array, in the same format as the structure returned by getdata.
Records retrieved from a log file into the MATLAB workspace are not removed from the log file.

You can specify a number of additional arguments to the opcread function, that control the records
that are retrieved from the file. The additional arguments must be specified by an option name and
the option value. The following options are available.

Option Name Option Value Description
'items' Specify a cell array of item IDs that you want returned. Items not in this list

will not be read.
'dates' Specify a date range for the event times. The range must be [startDt

endDt] where startDt and endDt are MATLAB date numbers.
'records' Specify the index of records to retrieve as [startRec endRec]. Records

outside these indices will not be read.
'datatype' Specify the data type, as a character vector, that should be used for the

returned values. Valid data type character vectors are the same as for
getdata. If you specify a numeric data type or 'cell', the output will be
returned in separate arrays. If you specify a numeric array data type such
as 'double' or 'uint32', and the logged data contains arrays or
character vectors, an error will be generated and no data will be returned.

The following example retrieves the data logged during the example on page “Overview of a Logging
Task” on page 7-12, first into a structure array, and then records 3 to 6 are retrieved into separate
arrays for Value, Quality, and TimeStamp.

sDisk = opcread('LoggingExample.olf')

sDisk =
40x1 struct array with fields:
 LocalEventTime
 Items

[i,v,q,t,e] = opcread('LoggingExample.olf', ...
 'records',[3,6], 'datatype','double')
i =
 'Random.Real8' 'Random.UInt2' 'Random.Real4'
v =
 1.0e+004 *
 0.7819 3.0712 1.4771
 1.5599 2.7792 2.2051
 1.4682 0.4055 0.5315
 0.0235 2.4473 1.5456
q =
 'Good: Non-specific' 'Good: Non-specific' 'Good: Non-specific'
 'Good: Non-specific' 'Good: Non-specific' 'Good: Non-specific'
 'Good: Non-specific' 'Good: Non-specific' 'Good: Non-specific'
 'Good: Non-specific' 'Good: Non-specific' 'Good: Non-specific'

7 Reading, Writing, and Logging OPC Data

7-18

t =
 1.0e+005 *
 7.3202 7.3202 7.3202
 7.3202 7.3202 7.3202
 7.3202 7.3202 7.3202
 7.3202 7.3202 7.3202
e =
 1.0e+005 *
 7.3202
 7.3202
 7.3202
 7.3202

Note For a record to be returned by opcread, it must satisfy all the options passed to opcread.

 Log OPC Server Data

7-19

Working with OPC Data

When an OPC server returns data from a read or logging operation, three pieces of information make
up the data. The Value, Quality, and Timestamp all contribute information about the data point that is
returned. As a result, you need to understand how to deal with this information together, because one
aspect of the data in isolation will not provide a complete picture of the data returned by a read
operation, data change event, read async event, or toolbox logging task.

This chapter describes how Industrial Communication Toolbox software handles data returned by an
OPC server.

• “OPC Data: Value, Quality, and TimeStamp” on page 8-2
• “Work with Structure-Formatted Data” on page 8-6
• “Array-Formatted Data” on page 8-11
• “Work with Different Data Types” on page 8-13

8

OPC Data: Value, Quality, and TimeStamp
In this section...
“Introduction to OPC Data” on page 8-2
“Relationship Between Value, Quality, and TimeStamp” on page 8-2
“How Value, Quality, and TimeStamp Are Obtained” on page 8-3

Introduction to OPC Data
OPC servers provide access to many server items. To reduce network traffic between the server and
the “device” associated with each server item (a field instrument, or a memory location in a PLC,
SCADA, or DCS system) the OPC server stores information about each server item in the server's
“cache,” updating that information only as frequently as required to satisfy the requests of all clients
connected to that server. Because this process results in data in the cache that may not reflect the
actual value of the device, the OPC server provides the client with additional information about that
value.

This section describes the OPC Value, Quality, and TimeStamp properties, and how they should be
used together to assess the information provided by an OPC server.

Relationship Between Value, Quality, and TimeStamp
Every server item on an OPC server has three properties that describe the status of the device or
memory location associated with that server item:

• Value — The Value of the server item is the last value that the OPC server stored for that
particular item. The value in the cache is updated whenever the server reads from the device. The
server reads values from the device at the update rate specified by the dagroup object's
UpdateRate property, and only when the item and group are both active. You control the active
status of an item or group using that object’s Active property.

In addition, for analog type data (data with the additional OPC Foundation Recommended
Properties 'High EU' and 'Low EU') the percentage change between the cached value and the
device value must exceed the DeadbandPercent property specified for that item in order for the
cached value to be updated.

• Quality — The Quality of the server item is a character vector that represents information about
how well the cache value matches the device value. The Quality is made up of two parts: a major
quality, which can be 'Good', 'Bad', or 'Uncertain', and a minor quality, which describes the
reason for the major quality. For more information on Quality, see “OPC Quality” on page A-2.

The Quality of the server item can change without the Value changing. For instance, if the OPC
server attempts to obtain a Value from the device but that operation fails, the Quality will be
set to 'Bad'. Also, when you change the client’s Active property, the Quality will change.

You must always examine the Quality of an item before using the Value property of that item.
• TimeStamp — The TimeStamp of a server item represents the most recent time that the server

assessed that the device set the Value and Quality properties of that server item. The
TimeStamp can change without the Value changing. For example, if the OPC server obtains a
value from the device that is the same as the current Value, the TimeStamp property will still be
updated, even if the Value property is not.

8 Working with OPC Data

8-2

Industrial Communication Toolbox software provides access to the Value, Quality, and TimeStamp
properties of a server item through properties of the OPC daitem object associated with that server
item.

How Value, Quality, and TimeStamp Are Obtained
Industrial Communication Toolbox provides all three OPC Data Access Standard mechanisms for
reading data from an OPC server. The toolbox uses these three mechanisms in various ways to return
data from those functions, to provide event information, to update properties of toolbox objects, and
to log data to memory and disk.

The toolbox uses the three OPC Data Access mechanisms as described in the following sections:

• “OPC Data Returned from Synchronous Read Operations” on page 8-3 describes the
synchronous read mechanism used by the read function.

• “OPC Data Returned in Asynchronous Read Operations” on page 8-3 describes the
asynchronous read mechanism used by the readasync function.

• “OPC Data Returned from a Data Change Event” on page 8-4 describes the data change event
notification mechanism used with subscribed, active groups, with the refresh function, and by the
toolbox logging process.

OPC Data Returned from Synchronous Read Operations

You initiate a synchronous read operation by using the read function. When you read from a
dagroup object, all items in that group are read in one instruction.

You can specify the source of a synchronous read operation as 'cache' or 'device'. If you read
from the cache, the server simply returns the value in the cache. If you read from the device, the
server will get the value from the device and update the cache before sending the Value, Quality, and
TimeStamp information back as part of the read operation.

Industrial Communication Toolbox returns the data in the output structure from the read operation.
Each element of the structure array contains information about one of the items read.

Whenever you read values using the read function, the toolbox updates the daitem object's Value,
Quality, and TimeStamp properties with the values read from the server.

OPC Data Returned in Asynchronous Read Operations

You initiate an asynchronous read operation by using the readasync function. When you read from a
dagroup object, all items in that group are read in one instruction.

Asynchronous read operations always use the device as the source of the read. Whenever you send an
asynchronous read request, the server will read values from the devices connected to the items. The
server will then update that server item's Value, Quality, and TimeStamp in the cache before sending
an asynchronous read event back to the toolbox.

The toolbox returns information from an asynchronous read operation via the read async event
structure. This event structure is stored in the opcda client object's event log, which you can access
using the EventLog property of the client. The event structure is also passed to the callback function
defined in the ReadAsyncFcn property of the dagroup object that initiated the asynchronous read
operation. For more information on the format of the event structures, see “Event Structures” on
page 9-8.

 OPC Data: Value, Quality, and TimeStamp

8-3

When an asynchronous read operation succeeds, in addition to returning data via the event
structures, the toolbox also updates the Value, Quality, and TimeStamp properties of the
associated daitem object.

OPC Data Returned from a Data Change Event

The third mechanism for getting data from an OPC server involves the data change event. The OPC
server generates a data change event for a group at the period specified by the UpdateRate property
when the Value or Quality of an item in the group changes. You do not have to specifically request a
data change event, because the OPC server will automatically generate a data change event.
However, you can force a data change event at any time using the refresh function.

An OPC server will generate a data change event only for an active, subscribed group containing
active items. You control the active status of dagroup objects and daitem objects by setting their
Active property. You control the subscribed status of a dagroup object by setting the
Subscription property of the dagroup object.

The following points describe how an OPC server generates a data change event:

• When you configure a group, you define the rate at which the server must scan items in that
group. This rate is controlled by the UpdateRate property for a dagroup object. The server
updates the Value, Quality, and TimeStamp values in the cache for the items in that group at the
required update rate. Note that if a device cannot provide a value in that time, the server may
reduce the rate at which it updates the value in the server cache for that item.

• If you set an item's Active property to 'off', the server will stop scanning that item. You must
set the Active property to 'on' for the server to scan the item again.

• If you set the Active property of a dagroup object to 'off', the server will stop scanning all
items in that group. You can still perform asynchronous read operations, and synchronous read
operations from the 'device', but no operations involving the server cache can be performed.
You must set the Active property to 'on' to enable operations involving the server cache.

• If the Subscription property for a dagroup object is set to 'on', then every time the server
updates cache values for the items in that group, the server will send a data change event for that
group, to the client object. The data change event contains information about every item whose
Value, Quality, or TimeStamp updated.

• If you set the Subscription property to 'off', then the OPC server will not generate data
change events. However, as long as the group is still active, the OPC server will continue to scan
all active items for that group, at the rate specified by the UpdateRate property.

When the OPC server generates a data change event, the toolbox performs the following tasks:

1 The daitem object Value, Quality, and TimeStamp properties are updated for each item that
is included in the data change event.

2 The callback function defined by the DataChangeFcn property of the dagroup object is called.
For more information on callbacks, see “Create and Execute Callback Functions” on page 9-12.

3 If the group is logging data, the data change event is stored in memory and/or on disk. For more
information on logging, see “Log OPC Server Data” on page 7-11.

4 If the group is logging, and the number of records acquired is a multiple of the
RecordsAcquiredFcnCount property of the dagroup object, then the callback function defined
by the RecordsAcquiredFcn property of the dagroup object is called. For more information on
callbacks, see “Create and Execute Callback Functions” on page 9-12.

8 Working with OPC Data

8-4

For more information on the structure of a data change event, see “Data Fields for Cancel Async,
Data Change, Error, Read Async, and Write Async Events” on page 9-8.

 OPC Data: Value, Quality, and TimeStamp

8-5

Work with Structure-Formatted Data
In this section...
“When Structures Are Used” on page 8-6
“Perform a Read Operation on Multiple Items” on page 8-6
“Interpret Structure-Formatted Data” on page 8-7
“When to Use Structure-Formatted Data” on page 8-9
“Convert Structure-Formatted Data to Array Format” on page 8-9

When Structures Are Used
Industrial Communication Toolbox software uses structures to return data from an OPC server, for
the following operations:

• Synchronous read operations, executed using the read function.
• Asynchronous read operations, executed using the readasync function.
• Data change events generated by the OPC server for all active, subscribed groups or through a

refresh function call.
• Retrieving logged data in structure format from memory using the getdata or peekdata

functions.

In all cases, the structure of the returned data is the same. This section describes that structure, and
how you can use the structure data to understand OPC operations.

Perform a Read Operation on Multiple Items
To illustrate how to use structure-formatted data, the following example reads values from three
items on the Matrikon OPC Simulation Server.

Step 1: Create OPC Group Objects

This example creates a hierarchy of OPC objects for the Matrikon Simulation Server. To run this
example on your system, you must have the Matrikon Simulation Server installed. Alternatively, you
can replace the values used in the creation of the objects with values for a server you can access.

da = opcda('localhost','Matrikon.OPC.Simulation.1');
connect(da);
grp = addgroup(da,'StructExample');
itm1 = additem(grp,'Random.Real8');
itm2 = additem(grp,'Saw-toothed Waves.UInt2');
itm3 = additem(grp,'Random.Boolean');

Step 2: Read Data

This example reads values first from the device and then from the server cache. The data is returned
in structure format.

r1 = read(grp, 'device');
r2 = read(grp);

8 Working with OPC Data

8-6

Step 3: Interpret the Data

The data is returned in structure format. To interpret the data, you must extract the relevant
information from the structures. In this example, you compare the Value, Quality, and TimeStamp to
confirm that they are the same for both read operations.

disp({r1.ItemID;r1.Value;r2.Value})
disp({r1.ItemID;r1.Quality;r2.Quality})
disp({r1.ItemID;r1.TimeStamp;r2.TimeStamp})

Step 4: Read More Data

By reading first from the cache and then from the device, you can compare the returned data to see if
any change has occurred. In this case, the data will not be the same.

r3 = read(grp);
r4 = read(grp, `device');
disp({r3.ItemID;r3.Value;r4.Value})

Step 5: Clean Up

Always remove toolbox objects from memory, and the variables that reference them, when you no
longer need them.

disconnect(da)
delete(da)
clear da grp itm1 itm2 itm3

Interpret Structure-Formatted Data
All data returned by the read, opcread, and getdata functions, and included in the data change
and read async event structures passed to callback functions, has the same underlying format. The
format is best explained by starting with the output from the read function, which provides the basic
building block of structure-formatted data.

Structure-Formatted Data for a Single Item

When you execute the read function with a single daitem object, the following structure is returned.

rSingle = read(itm1)

rSingle =

 ItemID: 'Random.Real8'
 Value: 1.0440e+004
 Quality: 'Good: Non-specific'
 TimeStamp: [2004 3 10 14 46 9.5310]
 Error: ''

All structure-formatted data for an item will contain the ItemID, Value, Quality, and TimeStamp
fields.

Note The Error field in this example is specific to the read function, and is used to indicate any
error message the server generated for that item.

 Work with Structure-Formatted Data

8-7

Structure-Formatted Data for Multiple Items

If you execute the read function with a group object containing more than one item, a structure
array is returned.

rGroup = read(grp)

rGroup =

3x1 struct array with fields:
 ItemID
 Value
 Quality
 TimeStamp
 Error

In this case, the structure array contains one element for each item that was read. The ItemID field
in each element identifies the item associated with that element of the structure array.

Note When you perform asynchronous read operations, and for data change events, the order of the
items in the structure array is determined by the OPC server. The order may not be the same as the
order of the items passed to the read function.

Structure-Formatted Data for Events

Event structures contain information specifically about the event, as well as the data associated with
that event.

The following example displays the contents of a read async event.

cleareventlog(da);
tid = readasync(itm);
% Wait for the read async event to occur
pause(1);
event = get(da, 'EventLog')

event =

 Type: 'ReadAsync'
 Data: [1x1 struct]

The Data field of the event structure contains

event.Data

ans =

 LocalEventTime: [2004 3 11 10 59 57.6710]
 TransID: 4
 GroupName: 'StructExample'
 Items: [1x1 struct]

The Items field of the Data structure contains

event.Data.Items

8 Working with OPC Data

8-8

ans =

 ItemID: 'Random.Real8'
 Value: 9.7471e+003
 Quality: 'Good: Non-specific'
 TimeStamp: [2004 3 11 10 59 57.6710]

From the example, you can see that the event structure embeds the structure-formatted data in the
Items field of the Data structure associated with the event. Additional fields of the Data structure
provide information on the event, such as the source of the event, the time the event was received by
the toolbox, and the transaction ID of that event.

Structure-Formatted Data for a Logging Task

Industrial Communication Toolbox software logs data to memory and/or disk using the data change
event. When you return structure-formatted data for a logging task using the opcread or getdata
function, the returned structure array contains the data change event information arranged in a
structure array. Each element of the structure array contains a record, or data change event. The
structure array has the LocalEventTime and Items fields from the data change event. The Items
field is in turn a structure array containing the fields ItemID, Value, Quality, and TimeStamp.

When to Use Structure-Formatted Data
For the read, read async and data change events, you must use structure-formatted data. However,
for a logging task, you have the option of retrieving the data in structure format, or numeric or cell
array format.

For a logging task, you should use structure-formatted data when you are interested in

• The “raw” event information returned by the OPC server. The raw information may help in
diagnosing the OPC server configuration or the client configuration. For example, if you see a data
value that does not change frequently, yet you know that the device should be changing frequently,
you can examine the structure-formatted data to determine when the OPC server notifies clients
of a change in Value, Quality and/or TimeStamp.

• Timing information rather than time series data. If you need to track when an operator changed
the state of a switch, structure-formatted data provides you with event-based data rather than
time series data.

For other tasks that involve time series data, such as visualization of the data, analysis, modeling, and
optimization operations, you should consider using the cell or numeric array output format for
getdata and opcread. For more information on array formats, see “Array-Formatted Data” on page
8-11.

Convert Structure-Formatted Data to Array Format
If you retrieve data from memory or disk in structure format, you can convert the resulting structure
into array format using the opcstruct2array function. You pass the structure array to the function,
and it will return the ItemID, Value, Quality, TimeStamp, and EventTime information contained
in that structure array.

The opcstruct2array function is particularly useful when you want to visualize or analyze time
series data without removing it from memory. Because peekdata only returns structure arrays (due

 Work with Structure-Formatted Data

8-9

to speed considerations), you can use opcstruct2array to convert the contents of the structure
data into separate arrays for visualization and analysis purposes.

Note You should always retrieve data in numeric or cell array format whenever you only want to
manipulate the time series data. Although the opcstruct2array function has been designed to use
as little memory as possible, conversion in MATLAB software still requires storage space for both the
structure array and the resulting arrays.

For an example of using opcstruct2array, see “Write a Callback Function” on page 9-12.

8 Working with OPC Data

8-10

Array-Formatted Data
In this section...
“Array Content” on page 8-11
“Conversion of Logged Data to Arrays” on page 8-11

Array Content
Industrial Communication Toolbox software can return arrays of Value, Quality, and TimeStamp
information from a logging task. You can retrieve arrays from memory using getdata, or from disk
using opcread, by specifying the data type as 'cell' or any MATLAB numeric array data type, such
as 'double' or 'uint32'. Consult the function reference pages for details on how to specify the
data type.

When you request array-formatted data, the toolbox returns arrays of each of the following elements
of the records in memory or on disk:

• ItemID — A 1-by-nItems list of all item IDs occurring in the structure array. Each record is
searched and all unique item IDs are returned in a cell array. The order of the item IDs must be
used to interpret any of the Value, Quality, or TimeStamp arrays.

• Value — An nRecs-by-nItems array of values for each item ID defined in the ItemID variable, at
each time stamp defined by the TimeStamp array. Each column of the Value array represents the
history of values for the corresponding item in the ItemID array. Each row corresponds to one
record. See “Treatment of Missing Data” on page 8-12 for information on how the Value array is
populated.

• Quality — An nRecs-by-nItems cell array of character vectors. Each column represents the
history of qualities for the corresponding item in the ItemID array. Each row corresponds to the
qualities for a particular record. If a particular item ID was not part of a record (because the item
did not change during that period), the corresponding column in that row is set to 'Repeat'.

• TimeStamp — An nRecs-by-nItems array of time stamps for each value in the Value field. The
time stamps are in MATLAB date number format. For more information on MATLAB date numbers,
see the datenum function help.

• EventTime — An nRecs-by-1 array of times that the record was received by the toolbox (the
LocalEventTime field of the record in structure format). The times are in MATLAB date number
format. For more information on MATLAB date numbers, see the datenum function help.

Conversion of Logged Data to Arrays
When you request array-formatted data from getdata or opcread, you must define the desired data
type for the returned Value array. Industrial Communication Toolbox automatically converts each
record of logged data from the item's data type (defined by the DataType property of that item) to
the requested data type.

When converting logged data to arrays, the toolbox must consider two factors when populating the
returned arrays:

• A record may not contain information for every item in the logging task. “Treatment of Missing
Data” on page 8-12 discusses how the toolbox deals with missing data.

 Array-Formatted Data

8-11

• A record may contain an array value for a single item. Such values cannot easily be converted to a
single value of numeric data types. “Treatment of Array Data Values” on page 8-12 discusses how
the toolbox deals with this issue.

Treatment of Missing Data

When the toolbox logs data, each logged record may not contain all items in the logging task. When
converting the data to array format, every item involved in the logging task must be allocated a value,
a quality, and a time stamp for each record. Therefore, in a logging task there may be "missing" data
for a particular item in a particular record. The toolbox uses the following rules to determine how to
fill the missing entry in each array:

• Value — When you request the 'cell' array data type, the value used for the missing entry is an
empty double array ([]). When requesting a numeric data type, the value used for the missing
entry is the last value for that item. If no previous value is known, the equivalent NaN (not a
number) entry is used. For example, if the very first record does not contain an entry for that item,
NaN is used to fill in the missing entry in the first row of the Value array. The equivalent NaN
value for integer and logical data types is 0.

• Quality — The missing entry is filled with the specific quality of 'Repeat'.
• TimeStamp — The time stamp used for the missing entry is the first time stamp found in that

particular record (row).

Treatment of Array Data Values

For each record stored in memory or on disk during a logging task, a single item may return an array
of values. When converting logged data to array format, each item in each record has only one entry
in the Value array allocated to that record and item.

For the 'cell' data type, the toolbox is able to store the array returned as the Value for that
element, because a MATLAB cell array is able to store any data type of any size in each element of
the cell array.

For numeric data types, such as 'double' or 'uint32', the resulting Value array provides space
for only a single value. Consequently, if an array value is found in a logging task, and you have
requested a numeric array data type, an error will be generated. You must use the 'cell' data type
or the structure format to return logged data that contains arrays as values.

8 Working with OPC Data

8-12

Work with Different Data Types
In this section...
“Conversion Between MATLAB Data Types and COM Variant Data Types” on page 8-13
“Conversion of Values Written to an OPC Server” on page 8-14
“Conversion of Values Read from an OPC Server” on page 8-14
“Handling Arrays for Item Values” on page 8-15

Conversion Between MATLAB Data Types and COM Variant Data Types
The OPC Data Access Standard uses the Microsoft COM Specification for communication between the
OPC server and OPC client. A significant amount of the data exchanged between the OPC server and
the client is the value from a server item or the value that a client wants to write to a server item. The
Microsoft COM Specification uses Microsoft Variants to send different data types between the client
and server. This section discusses how Industrial Communication Toolbox software converts MATLAB
data types to COM Variants when writing values, and COM Variants to MATLAB data types when
reading values.

OPC servers require all values to be written to server items in COM Variant format. The server also
provides the toolbox with COM Variants when an item's Value property is read or returned by the
server. The toolbox automatically converts between the COM Variant type and MATLAB data types
according to the table shown below.

 Work with Different Data Types

8-13

Table 8-1, Conversion from MATLAB Data Type to COM Variant Data Type

MATLAB Data Type OPC Server Data Type
(COM Variant Type)

Remarks

double VT_R8
single VT_R4
char VT_BSTR
logical VT_BOOL
uint8 VT_UI1
uint16 VT_UI2
uint32 VT_UI4
uint64 VT_UI8
int8 VT_I1
int16 VT_I2
int32 VT_I4
int64 VT_I8
function_handle N/A Not allowed
cell N/A Not allowed
struct N/A Not allowed
object N/A Not allowed
N/A VT_DISPATCH Not allowed
N/A VT_BYREF Not allowed
double VT_EMPTY Returns the empty matrix ([])

Conversion of Values Written to an OPC Server
When you write values to the OPC server using the write or writeasync function, you can provide
any MATLAB data for the write operation. When you write data to an OPC server, the following data
conversions take place:

1 Industrial Communication Toolbox software converts the value into the equivalent COM Variant
according to Table 8-1, Conversion from MATLAB Data Type to COM Variant Data Type. If any
disallowed data type is encountered (for example, if you attempt to write a MATLAB structure),
an error will be generated.

2 The COM Variant is sent to the OPC server.
3 The OPC server will attempt to convert the COM Variant to the server item's canonical data type,

using COM Variant conversion rules. If the conversion fails, the server will return an error.

Conversion of Values Read from an OPC Server
When an OPC server returns values for a server item to MATLAB, the OPC server will first convert
the value to the COM Variant equivalent of the data type specified by the daitem object's DataType
property. If the conversion fails, an error message is returned with the value. When the toolbox

8 Working with OPC Data

8-14

receives the value, the COM Variant is converted to the equivalent MATLAB data type according to
Table 8-1, Conversion from MATLAB Data Type to COM Variant Data Type.

Handling Arrays for Item Values
The OPC Specification supports arrays of values being written to a server item, and read from a
server item. However, a specific server item may not accept an array of values. The behavior of the
server in that case is server-dependent. For example, one server may use only the first value of the
array. Another server may return an error when attempting to write an array of values to a server
item that only supports a scalar value. Industrial Communication Toolbox software is not able to
determine if a server item accepts only scalar values.

For all of the data types listed in Table 8-1, Conversion from MATLAB Data Type to COM Variant Data
Type that can be converted between MATLAB and a COM Variant, scalar and array data are
permitted by the toolbox. However, the OPC Specification supports only one-dimensional arrays of
data. Higher dimension MATLAB arrays are flattened into a one-dimensional vector when writing
data to the OPC server.

 Work with Different Data Types

8-15

Using Events and Callbacks

You can enhance the power and flexibility of your OPC application by using event callbacks. An event
is a specific occurrence that can happen while an OPC Data Access client object (opcda client object)
is connected to an OPC server. The toolbox defines a set of events that include starting, stopping, or
acquiring records during a logging task, as well as events for asynchronous reads and writes, data
changes, and server shutdown notification.

When a particular event occurs, the toolbox can execute a function that you specify. This is called a
callback. Certain events can result in one or more callbacks. You can use callbacks to perform
processing tasks while your client object is connected. For example, you can display a message,
analyze data, or perform other tasks. Callbacks are controlled through OPC object properties. Each
event type has an associated property. You specify the function that you want executed as the value of
that property.

• “Use the Default Callback Function” on page 9-2
• “Event Types” on page 9-4
• “Retrieve Event Information” on page 9-8
• “Create and Execute Callback Functions” on page 9-12

9

Use the Default Callback Function
In this section...
“Overview to Callback Example” on page 9-2
“Step 1: Create OPC Group Objects” on page 9-2
“Step 2: Configure the Logging Task Properties” on page 9-2
“Step 3: Configure the Callback Properties” on page 9-2
“Step 4: Start the Logging Task” on page 9-3
“Step 5: Clean Up” on page 9-3

Overview to Callback Example
To illustrate how to use callbacks, this section presents a simple example that creates an OPC object
hierarchy and associates a callback function with the start event, records acquired event, and stop
event of the OPC Data Access Group object (dagroup object). For information about all the event
callbacks supported by the toolbox, see “Event Types” on page 9-4.

The example uses the default callback function provided with the toolbox, opccallback. The default
callback function displays the name of the object along with information about the type of event that
occurred and when it occurred. To learn how to create your own callback functions, see “Create and
Execute Callback Functions” on page 9-12.

Step 1: Create OPC Group Objects
This example creates a hierarchy of OPC objects for the Matrikon Simulation Server. To run this
example on your system, you must have the Matrikon Simulation Server installed. Alternatively, you
can replace the values used in the creation of the objects with values for a server you can access.

da = opcda('localhost','Matrikon.OPC.Simulation.1');
connect(da);
grp = addgroup(da,'CallbackTest');
itm = additem(grp,{'Random.Real8','Saw-toothed Waves.UInt2'});

Step 2: Configure the Logging Task Properties
For this example, we log 20 records at 0.5-second intervals.

grp.RecordsToAcquire = 20;
grp.UpdateRate = 0.5;

Step 3: Configure the Callback Properties
Set the values of three callback properties. The example uses the default callback function
opccallback.

grp.StartFcn = @opccallback;
grp.StopFcn = @opccallback;
grp.RecordsAcquiredFcn = @opccallback;

For this example, specify how often to generate a records acquired event.

9 Using Events and Callbacks

9-2

grp.RecordsAcquiredFcnCount = 5;

Step 4: Start the Logging Task
Start the dagroup object. The object logs 20 records at 0.5-second intervals, and then stops. With the
three callback functions enabled, the object outputs information about each event as it occurs. The
records acquired event occurs four times for this example.

start(grp)

OPC Start event occurred at local time 18:52:38
 Group 'CallbackTest': 0 records acquired.
OPC RecordsAcquired event occurred at local time 18:52:41
 Group 'CallbackTest': 5 records acquired.
OPC RecordsAcquired event occurred at local time 18:52:44
 Group 'CallbackTest': 10 records acquired.
OPC RecordsAcquired event occurred at local time 18:52:47
 Group 'CallbackTest': 15 records acquired.
OPC RecordsAcquired event occurred at local time 18:52:49
 Group 'CallbackTest': 20 records acquired.
OPC Stop event occurred at local time 18:52:49
 Group 'CallbackTest': 20 records acquired.

Step 5: Clean Up
Always remove toolbox objects from memory, and the variables that reference them, when you no
longer need them.

disconnect(da)
delete(da)
clear da grp itm

 Use the Default Callback Function

9-3

Event Types
Industrial Communication Toolbox software supports several different types of events. Each event
type has an associated toolbox object property that you can use to specify the function that executes
when the event occurs.

The following table lists the supported event types, the name of the object property associated with
the event, and a brief description of the event, including the object class associated with the event.
For detailed information about these callback properties, see the reference information for the
property.

The toolbox generates a specific set of information for each event and stores it in an event structure.
To learn more about the contents of these event structures and how to retrieve this information, see
“Retrieve Event Information” on page 9-8.

9 Using Events and Callbacks

9-4

Events and Callback Function Properties

Event Callback Property Description
Cancel Async CancelAsyncFcn The toolbox generates a cancel async event when an

asynchronous operation is cancelled. You cancel an
asynchronous operation using the cancelasync function.

When a cancel async event occurs, the toolbox executes the
function specified by the CancelAsyncFcn property. By
default, the toolbox executes the default callback function for
this event, opccallback, which displays information about
the cancel async event at the MATLAB command line.

Cancel async events occur at the dagroup object level.
Data Change DataChangeFcn The toolbox generates a data change event when the server

notifies the toolbox that data for a group has changed. The
server will notify the toolbox of data changes only if the
group's Active property is set to 'on' and the
Subscription property is set to 'on'. For more information
on controlling data change events, see “Data Change Events
and Subscription” on page 7-8.

When a data change event occurs, the toolbox executes the
function specified by the DataChangeFcn property.

Data change events occur at the dagroup object level.
Error ErrorFcn The toolbox generates an error event when a run-time error

occurs, such as a data type conversion error or time-out. Run-
time errors do not include configuration errors such as
setting an invalid property value.

When an error event occurs, the toolbox executes the
function specified by the ErrorFcn property. By default, the
toolbox executes the default callback function for this event,
opccallback, which displays the error message at the
MATLAB command line.

Error events occur at the opcda client object level.
Read Async ReadAsyncFcn The toolbox generates a read async event when an

asynchronous read operation completes. You execute an
asynchronous read operation using the readasync function.

When a read async event occurs, the toolbox executes the
function specified by the ReadAsyncFcn property. By default,
the toolbox executes the default callback function for this
event, opccallback, which displays information about the
read async event at the MATLAB command line.

Read async events occur at the dagroup object level.

 Event Types

9-5

Event Callback Property Description
Records
Acquired

RecordsAcquiredFcn The toolbox generates a records acquired event every time an
integer multiple of a specified number of records have been
acquired. You use the RecordsAcquiredFcnCount property
to specify this number.

When a records acquired event occurs, the toolbox executes
the function specified by the RecordsAcquiredFcn
property.

Records acquired events occur at the dagroup object level.
Shutdown ShutDownFcn The toolbox generates a shutdown event when the OPC

server notifies the client that the server is about to shut
down.

When a shutdown event occurs, the toolbox executes the
function specified by the ShutDownFcn property, and the
client object is then disconnected from the server. By default,
the toolbox executes the default callback function for this
event, opccallback, which displays information about the
shutdown event at the MATLAB command line.

Shutdown events occur at the opcda client object level.
Start StartFcn The toolbox generates a start event when an object is started.

You use the start function to start an object.

Note If an error occurs in the start callback function, the
object does not start.

When a start event occurs, the toolbox executes the function
specified by the StartFcn property.

Start events occur at the dagroup object level.
Stop StopFcn The toolbox generates a stop event when the object stops

running. An object stops running when the stop function is
called, or when the specified number of records is acquired.

When a stop event occurs, the toolbox executes the function
specified by the StopFcn property.

Stop events occur at the dagroup object level.

9 Using Events and Callbacks

9-6

Event Callback Property Description
Timer TimerFcn The toolbox generates a timer event when an integer multiple

of a specified amount of time expires. You use the
TimerPeriod property to specify the amount of time. Time is
measured relative to when the opcda client object is
connected.

Note Some timer events might not execute if your system is
significantly slowed or if the TimerPeriod is set too small.

When a timer event occurs, the toolbox executes the function
specified by the TimerFcn property.

Timer events occur at the opcda client object level.
Write Async WriteAsyncFcn The toolbox generates a write async event when an

asynchronous write operation completes. You execute an
asynchronous write operation using the writeasync
function.

When a write async event occurs, the toolbox executes the
function specified by the WriteAsyncFcn property. By
default, the toolbox executes the default callback function for
this event, opccallback, which displays information about
the write async event at the MATLAB command line.

Write async events occur at the dagroup object level.

 Event Types

9-7

Retrieve Event Information
In this section...
“Event Structures” on page 9-8
“Access Data in the Event Log” on page 9-10

Event Structures
Each event has a set of information associated with that event. The information is generated by the
OPC server or the toolbox software, and stored in an event structure. This information includes the
event type, the time the event occurred, and other event-specific information. For some events, the
toolbox records event information in the opcda client object's EventLog property. You can also access
the event structure associated with an event in a callback function.

For information about accessing event information in a callback function, see “Create and Execute
Callback Functions” on page 9-12.

An event structure contains two fields: Type and Data. For example, this is an event structure for a
start event.

Type: 'Start'
Data: [1x1 struct]

The Type field is a character vector that specifies the event type. For a start event, this field contains
the value 'Start'.

The Data field is a structure that contains information about the event. The composition of this
structure varies, depending on which type of event occurred. For details about the information
associated with specific events, see the following sections:

• “Data Fields for Cancel Async, Data Change, Error, Read Async, and Write Async Events”
on page 9-8

• “Data Fields for Start, Stop, and Records Acquired Events” on page 9-9
• “Data Fields for Shutdown Events” on page 9-9
• “Data Fields for Timer Events” on page 9-9

Data Fields for Cancel Async, Data Change, Error, Read Async, and Write Async Events

For cancel async, data change, error, read async, and write async events, the Data structure contains
these fields.

Field Name Description
GroupName The name of the group associated with the event.
LocalEventTime Absolute time the event occurred, returned in MATLAB date vector

format:

[year month day hour minute seconds]
TransID The transaction ID for the operation. In the case of a cancel async

event, TransID contains the transaction ID that was cancelled.

9 Using Events and Callbacks

9-8

Field Name Description
Items A structure array containing information about each item in the

asynchronous operation. The cancel async event structure does not
contain this field.

The Items structure array for read async events contains the following fields.

Field Name Description
ItemID The item ID for this record in the structure array.
Value The data value.
Quality The data quality as a character vector.
TimeStamp The time the OPC server updated the value and quality. The time is

returned in MATLAB date vector format:

[year month day hour minute seconds]

The Items structure array for write async events contains one field: ItemID.

The Items structure array for error events contains the ItemID field and an Error field, containing a
character vector describing the error that occurred for that item.

Data Fields for Start, Stop, and Records Acquired Events

For start, stop, and records acquired events, the Data structure contains these fields.

Field Name Description
GroupName The name of the group associated with the event.
LocalEventTime Absolute time the event occurred, returned in MATLAB date vector

format:

[year month day hour minute seconds]
RecordsAcquired The total number of records acquired in the current logging session.

Data Fields for Shutdown Events

For shutdown events, the Data structure contains these fields.

Field Name Description
LocalEventTime Absolute time the event occurred, returned in MATLAB date vector

format:

[year month day hour minute seconds]
Reason A character vector containing the reason the OPC server provided for

shutting down.

Data Fields for Timer Events

For timer events, the Data structure contains these fields.

 Retrieve Event Information

9-9

Field Name Description
LocalEventTime Absolute time the event occurred, returned in MATLAB date vector

format:

[year month day hour minute seconds]

Access Data in the Event Log
While an opcda client object is connected, the toolbox stores event information in the opcda client
object's EventLog property. The value of this property is an array of event structures. Each structure
represents one event. For detailed information about the composition of an event structure for each
type of event, see “Event Structures” on page 9-8.

The toolbox adds event structures to the EventLog array in the order in which the events occur. The
first event structure reflects the first event recorded, the second event structure reflects the second
event recorded, and so on.

Note Data change events, records acquired events, and timer events are not included in the
EventLog. Event structures for these events (and all the other events) are available to callback
functions. For more information, see “Create and Execute Callback Functions” on page 9-12.

To illustrate the event log, this example creates an OPC object hierarchy, executes a logging task, and
then examines the object's EventLog property:

Step 1: Create the OPC Object Hierarchy

This example creates a hierarchy of OPC objects for the Matrikon Simulation Server. To run this
example on your system, you must have the Matrikon Simulation Server installed. Alternatively, you
can replace the values used in the creation of the objects with values for a server you can access.

da = opcda('localhost','Matrikon.OPC.Simulation.1');
connect(da);
grp = addgroup(da,'CallbackTest');
itm1 = additem(grp,'Triangle Waves.Real8');

Step 2: Start the Logging Task

Start the dagroup object. By default, the object acquires 120 records at 0.5-second intervals, and
then stops. Wait for the object to stop logging data.

start(grp)
wait(grp)

Step 3: View the Event Log

Access the EventLog property of the opcda client object. The execution of the group logging task
generated two events: start and stop. Thus the value of the EventLog property is a 1-by-2 array of
event structures.

events = da.EventLog

events =

9 Using Events and Callbacks

9-10

1x2 struct array with fields:
 Type
 Data

To list the events that are recorded in the EventLog property, examine the contents of the Type field.

{events.Type}

ans =
 'Start' 'Stop'

To get information about a particular event, access the Data field in that event structure. The
example retrieves information about the stop event.

stopdata = events(2).Data

stopdata =
 LocalEventTime: [2004 3 2 21 33 45.8750]
 GroupName: 'CallbackTest'
 RecordsAcquired: 120

Step 4: Clean Up

Always remove toolbox objects from memory, and the variables that reference them, when you no
longer need them. Deleting the opcda client object also deletes the group and item objects.

disconnect(da)
delete(da)
clear da grp itm1

 Retrieve Event Information

9-11

Create and Execute Callback Functions
In this section...
“Create Callback Functions” on page 9-12
“Specify Callback Functions” on page 9-13
“View Recently Logged Data” on page 9-15

Create Callback Functions
The power of using event callbacks is that you can perform processing in response to events. You
decide which events with which you want to associate callbacks, and which functions these callbacks
execute.

Note Callback function execution might be delayed if the callback involves a CPU-intensive task, or if
MATLAB software is processing another task.

Callback functions require at least two input arguments:

• The OPC object
• The event structure associated with the event

The function header for this callback function illustrates this basic syntax.

function mycallback(obj,event)

The first argument, obj, is the toolbox object itself. Because the object is available, you can use in
your callback function any of the toolbox functions, such as getdata, that require the object as an
argument. You can also access all object properties, including the parent and children of the object.

The second argument, event, is the event structure associated with the event. This event information
pertains only to the event that caused the callback function to execute. For a complete list of
supported event types and their associated event structures, see “Event Structures” on page 9-8.

In addition to these two required input arguments, you can also specify application-specific
arguments for your callback function.

Note If you specify input arguments in addition to the object and event arguments, you must use a
cell array when specifying the name of the function as the value of a callback property. For more
information, see “Specify Callback Functions” on page 9-13.

Write a Callback Function

This example implements a callback function for a records acquired event. This callback function
enables you to monitor the records being acquired by viewing the most recently acquired records in a
plot window.

To implement this function, the callback function acquires the last 60 records of data (or fewer if not
enough data is available in the toolbox engine) and displays the data in a MATLAB figure window. The

9 Using Events and Callbacks

9-12

function also accesses the event structure passed as an argument to display the time stamp of the
event. The drawnow command in the callback function forces MATLAB to update the display.

function display_opcdata(obj,event)

numRecords = min(obj.RecordsAvailable, 100);
lastRecords = peekdata(obj,numRecords);
[i, v, q, t] = opcstruct2array(lastRecords);
plot(t, v);
isBad = strncmp('Bad', q, 3);
isRep = strncmp('Repeat', q, 6);
hold on
for k=1:length(i)
 h = plot(t(isBad(:,k),k), v(isBad(:,k),k), 'o');
 set(h,'MarkerEdgeColor','k', 'MarkerFaceColor','r')
 h = plot(t(isRep(:,k),k), v(isRep(:,k),k), '*');
 set(h,'MarkerEdgeColor',[0.75, 0.75, 0]);
end
axis tight;
ylim([0, 200]);
datetick('x','keeplimits');
eventTime = event.Data.LocalEventTime;
title(sprintf('Event occurred at %s', ...
 datestr(eventTime, 13)));
drawnow; % force an update of the figure window
hold off;

To see how this function can be used as a callback, see “View Recently Logged Data” on page 9-15.

Specify Callback Functions
You associate a callback function with a specific event by setting the value of the OPC object property
associated with that event. You can specify the callback function as the value of the property in one of
three ways:

• “Use a Character Vector to Specify Callback Functions” on page 9-13
• “Use a Cell Array to Specify Callback Functions” on page 9-14
• “Use Function Handles to Specify Callback Functions” on page 9-14

The following sections provide more information about each of these options.

Note To access the object or event structure passed to the callback function, you must specify the
function as a cell array or as a function handle.

Use a Character Vector to Specify Callback Functions

You can specify the callback function as a character vector. For example, this code specifies the
callback function mycallback as the value of the start event callback property StartFcn for the
group object grp.

grp.StartFcn = 'mycallback';

In this case, the callback is evaluated in the MATLAB workspace.

 Create and Execute Callback Functions

9-13

Use a Cell Array to Specify Callback Functions

You can specify the callback function as a character vector inside a cell array.

For example, this code specifies the callback function mycallback as the value of the start event
callback property StartFcn for the group object grp.

grp.StartFcn = {'mycallback'};

To specify additional parameters, include them as additional elements in the cell array.

time = datestr(now,0);
grp.StartFcn = {'mycallback',time};

The first two arguments passed to the callback function are still the OPC object (obj) and the event
structure (event). Additional arguments follow these two arguments.

Use Function Handles to Specify Callback Functions

You can specify the callback function as a function handle.

For example, this code specifies the callback function mycallback as the value of the start event
callback property StartFcn for the group object grp.

grp.StartFcn = @mycallback;

To specify additional parameters, include the function handle and the parameters as elements in the
cell array.

time = datestr(now,0);
grp.StartFcn = {@mycallback,time};

If you are executing a local callback function from within a file, you must specify the callback as a
function handle.

Specify a Toolbox Function as a Callback

In addition to specifying callback functions of your own creation, you can also specify toolbox
functions as callbacks. For example, this code sets the value of the stop event callback to the start
function.

grp.StopFcn = @start;

Disable Callbacks

If an error occurs in the execution of the callback function, the toolbox disables the callback and
displays a message similar to the following.

start(grp)

??? Error using ==> myrecords_cb
Too many input arguments.

Warning: The RecordsAcquiredFcn callback is being disabled.

To enable a callback that has been disabled, set the value of the property associated with the
callback.

9 Using Events and Callbacks

9-14

View Recently Logged Data
This example configures an OPC object hierarchy and sets the records acquired event callback
function property to the display_opcdata function, created in “Write a Callback Function” on page
9-12.

When run, the example displays the last 60 records of acquired data every time 5 records have been
acquired. Repeat values are highlighted with magenta circles, and bad values are highlighted with
red circles.

Step 1: Create the OPC Object Hierarchy

This example creates a hierarchy of OPC objects for the Matrikon Simulation Server. To run this
example on your system, you must have the Matrikon Simulation Server installed. Alternatively, you
can replace the values used in the creation of the objects with values for a server you can access.

da = opcda('localhost','Matrikon.OPC.Simulation.1');
connect(da)
grp = addgroup(da,'CallbackTest');
itm1 = additem(grp,'Triangle Waves.Real8');
itm2 = additem(grp,'Saw-toothed Waves.UInt2');

Step 2: Configure Property Values

This example sets the UpdateRate value to 0.2 seconds, and the RecordsToAcquire property to
200. The example also specifies as the value of the RecordsAcquiredFcn callback the event
callback function display_opcdata, created in “Write a Callback Function” on page 9-12. The
object will execute the RecordsAcquiredFcn every 5 records, as specified by the value of the
RecordsAcquiredFcnCount property.

grp.UpdateRate = 0.2;
grp.RecordsToAcquire = 200;
grp.RecordsAcquiredFcnCount = 5;
grp.RecordsAcquiredFcn = @display_opcdata;

Step 3: Acquire Data

Start the dagroup object. Every time 5 records are acquired, the object executes the
display_opcdata callback function. This callback function displays the most recently acquired
records logged to the memory buffer.

start(grp)
wait(grp)

Step 4: Clean Up

Always remove toolbox objects from memory, and the variables that reference them, when you no
longer need them. Deleting the opcda client object also deletes the group and item objects.

disconnect(da)
delete(da)
clear da grp itm1 itm2

 Create and Execute Callback Functions

9-15

Using the OPC Block Library

• “Block Library Overview” on page 10-2
• “Read and Write Data from a Model” on page 10-3
• “Use the OPC Client Manager” on page 10-11

10

Block Library Overview

Industrial Communication Toolbox software includes a Simulink interface called the OPC block
library. This library is a tool for sending data from your Simulink model to an OPC server, or querying
an OPC server to receive live data into your model. You use blocks from the OPC block library with
blocks from other Simulink libraries to create models capable of sophisticated OPC server
communications.

The OPC block library requires Simulink, a tool for simulating dynamic systems. Simulink is a model
definition environment. Use Simulink blocks to create a block diagram that represents the
computations of your system or application. Simulink is also a model simulation environment in which
you can see how your system behaves.

The best way to learn about the OPC block library is to observe an example, such as “Read and Write
Data from a Model” on page 10-3.

10 Using the OPC Block Library

10-2

Read and Write Data from a Model
In this section...
“Example Overview” on page 10-3
“Step 1: Create New Model in Simulink Editor” on page 10-3
“Step 2: Open the OPC Block Library” on page 10-3
“Step 3: Drag OPC Blocks into the Editor” on page 10-4
“Step 4: Drag Other Blocks to Complete the Model” on page 10-5
“Step 5: Configure OPC Servers for the Model” on page 10-5
“Step 6: Specify the Block Parameter Values” on page 10-7
“Step 7: Connect the Blocks” on page 10-9
“Step 8: Run the Simulation” on page 10-10

Example Overview
This section provides a step-by-step example to illustrate how to use the OPC block library. The
example builds a simple model using the blocks in the OPC block library with blocks from other
Simulink libraries.

This example writes a sine wave to the Matrikon OPC Simulation Server, and reads the data back
from the same server. You use the OPC Write block to send data to the OPC server, and the OPC Read
block to read that same data back into your model.

Note To run the code in the following examples, you must have the Matrikon OPC Simulation Server
available on your local machine. For information on installing this, see “Install an OPC DA or HDA
Simulation Server for OPC Classic Examples” on page 1-14. The code used in this example requires
only minor changes to work with other servers.

Step 1: Create New Model in Simulink Editor
1 To start Simulink and create a new model, enter the following at the MATLAB command prompt:

simulink

In the Simulink start page dialog, click Blank Model, and then Create Model. An empty, Editor
window opens.

2 In the Editor, click File > Save As to assign a name to your new model.

Step 2: Open the OPC Block Library
1 In the model Editor window, click Library Browser.

The Simulink Library Browser opens in the left pane of the Editor, with a tree of available block
libraries in alphabetical order.

2 Expand the Industrial Communication Toolbox node.

 Read and Write Data from a Model

10-3

Alternatively, you can open the OPC block library in a standalone window by typing the following
command at the MATLAB command prompt:

opclib

Step 3: Drag OPC Blocks into the Editor
The OPC block library contains four blocks

• OPC Configuration
• OPC Quality Parts
• OPC Read
• OPC Write

You can use these blocks to configure and manage connections to servers, to send and receive live
data between your OPC server and your simulation, and to analyze OPC quality.

To use the blocks in a model, select each block in the library and drag the block into the Simulink
Editor. For this example, you need one instance each of the OPC Configuration, OPC Write, and OPC
Read block in your model.

Note Block names are not shown by default in the model. To display the hidden block names while
working in the model, select Display and clear the Hide Automatic Names check box.

10 Using the OPC Block Library

10-4

Step 4: Drag Other Blocks to Complete the Model
Your model requires three more blocks. One block provides the data sent to the server; the other two
blocks display the data received from the server.

To send a sine wave to the server, you can use the Sine Wave block. To access the Sine Wave block,
expand the Simulink node in the browser tree, and click the Sources library entry. From the blocks
displayed in the right pane, drag the Sine Wave block into the Simulink Editor and place it to the left
of the OPC Write block.

You can use the Scope block to show the value received from the server, and a Display block to view
the quality of the item. (You will remove the time stamp output port in the next step.) To access the
Scope block, click the Sinks library entry in the expanded Simulink node in the browser tree. From
the blocks displayed in the right pane, drag the Scope block into the Simulink Editor and place it
above and to the right of the OPC Read block. Also drag a Display block into the Simulink Editor and
place it below the Scope block.

Step 5: Configure OPC Servers for the Model
To communicate with OPC servers from Simulink, you first need to configure those servers in the
model. The OPC Configuration block manages and configures OPC servers for a Simulink model. Each
OPC Read or OPC Write block uses one server from the configured servers, and defines the items to
read from or write to.

1 Double-click the OPC Configuration block to open its parameters dialog.

 Read and Write Data from a Model

10-5

2 Click Configure OPC Clients to open the OPC Client Manager.

3 Click Add to open the OPC Server Properties dialog. Specify the ID of the server as
'Matrikon.OPC.Simulation.1' (or click Select and choose the server from the list of
available OPC servers).

4 Click OK to add the OPC server to the OPC Client Manager.

10 Using the OPC Block Library

10-6

The Matrikon OPC Simulation Server is now available throughout the model for reading and
writing.

5 Your model will use default values for all other settings in the OPC Configuration block. Click OK
in the OPC Configuration dialog to close that dialog.

Step 6: Specify the Block Parameter Values
You set parameters for the blocks in your model by double-clicking on each block.

1 Double-click the OPC Write block to open its parameters dialog. The Matrikon server is
automatically selected for you as the OPC client to use in this block. You need to specify the items
for writing.

2 Click Add Items to display a name space browser for the Matrikon OPC Simulation Server.
3 Expand the Simulation Items node in the name space, then expand the Bucket Brigade node.

Select the Real8 node and click >> to add that item to the selected items list.

 Read and Write Data from a Model

10-7

4 Click OK to add the item Bucket Brigade.Real8 to the OPC Write block’s ItemIDs list.
5 In the OPC Write parameters dialog, click OK to accept the changes and close the dialog.
6 Double-click the OPC Read block to open its dialog. Add the same item to the OPC Read block,

repeating steps 2–5 that you followed for the OPC Write block in this section.
7 Set the read mode to 'Synchronous (device)' and the sample time for the block to 0.2.
8 Also uncheck the 'Show timestamp port' option. This step removes the time stamp output

port from the OPC Read block.

10 Using the OPC Block Library

10-8

Step 7: Connect the Blocks
Make a connection between the Sine Wave block and the OPC Write block. When you move the cursor
near the output port of the Sine Wave block, the cursor becomes crosshairs. Click the Sine Wave
output port and hold the mouse button; drag to the input port of the OPC Write block, and release the
button.

In the same way, make a connection between the first output port of the OPC Read block (labeled V)
and the input port of the Scope block. Then connect the other output port of the OPC Read block
(labeled Q) to the input port of the Display block.

Note that the OPC Write and OPC Read blocks do not directly connect together within the model. The
only communication between them is through an item on the server, which you defined in “Step 5:
Configure OPC Servers for the Model” on page 10-5.

 Read and Write Data from a Model

10-9

Step 8: Run the Simulation
Before you run the simulation, double-click the Scope block to open the scope view.

To run the simulation, click Run in the Simulink Editor toolstrip.

The model writes a sine wave to the OPC server, reads back from the server, and displays the wave in
the scope trace. In addition, the quality value is set to 192, which indicates a good quality (see “OPC
Quality” on page A-2).

While the simulation is running, the status bar at the bottom of the model window updates the
progress of the simulation, and the sine wave is displayed in the Scope window.

10 Using the OPC Block Library

10-10

Use the OPC Client Manager
In this section...
“Introduction to the OPC Client Manager” on page 10-11
“Add Clients to the OPC Client Manager” on page 10-11
“Remove Clients from the OPC Client Manager” on page 10-12
“Modify the Server Timeout Value for a Client” on page 10-12
“Control Client/Server Connections” on page 10-12

Introduction to the OPC Client Manager
The OPC Client Manager displays and manages all clients for a Simulink model. Using the OPC Client
Manager, you associate one or more clients with a particular model. Each time you use an OPC Read
or OPC Write block, you choose the client for that block from the list of configured clients. By
defining a single list of clients in the OPC Client Manager, you enable a Simulink model to reuse
clients among OPC Read and OPC Write blocks.

You access the OPC Client Manager from the parameters dialog of the OPC Configuration, OPC Read,
or OPC Write block, by clicking Configure OPC Clients. A dialog similar to the following figure
appears.

Add Clients to the OPC Client Manager
You add clients to the OPC Client Manager by clicking Add. The following dialog box appears.

Specify the host in the Host edit box. You can then type the Server ID of the required server, or use
Select to query the host for a list of servers.

Specify the timeout (in seconds) to use when communicating with the server.

 Use the OPC Client Manager

10-11

When you click OK, the client is added to the OPC Clients list in the OPC Client Manager. You can
now use that client in one or more OPC Read or OPC Write blocks within that model.

Remove Clients from the OPC Client Manager
To remove a client from the OPC Client Manager, select the client in the OPC Clients list and click
Delete. A confirmation dialog appears. Click Delete to remove the client from the OPC Client
Manager.

If you attempt to remove a client that is referenced by one or more OPC library blocks, you see the
following dialog.

Click Delete to remove all blocks that reference the client you want to delete.

Click Replace to replace the referenced client with another client in the OPC Client list (this choice
is available only if another client is available), and select the replacement client from the resulting
list. Click Cancel to cancel the delete operation.

Modify the Server Timeout Value for a Client
Click Edit to modify the timeout property of the selected client. The timeout value is specified in
seconds, and applies to all server operations (connect, disconnect, read, write).

Control Client/Server Connections
Industrial Communication Toolbox software automatically attempts to connect a client configured in
the OPC Client Manager to its server. This enables you to browse the server name space for items,
and speeds up the initialization process of simulating a model.

You can control the client connection status by highlighting a client in the OPC Client list and
clicking Connect or Disconnect.

The OPC block library automatically reconnects any disconnected client to its server when you run a
simulation.

10 Using the OPC Block Library

10-12

Properties

11

opcda Object Properties
Configure OPC DA client

Description
Use the properties of the opcda client object to access server connection parameters and specify
other high level behaviors.

Properties
General Settings

EventLog — Event information log
structure

This property is read-only.

EventLog contains a structure array that stores information related to Industrial Communication
Toolbox software events. Every element in the structure array corresponds to an event.

Each element in the EventLog structure contains the fields Type and Data. The Type value can be
'WriteAsync', 'ReadAsync', 'CancelAsync', 'Shutdown', 'Start', 'Stop', or 'Error'.

Data stores event-specific information as a structure. For information on the fields contained in
Data, refer to the associated callback property reference pages. For example, to find information on
the fields contained in Data for a Start event, refer to the StartFcn property.

You specify the maximum number of events to store with the EventLogMax property.

Note that some events are not stored in the EventLog. If you want to store these events, you must
specify a callback for that event.

You can execute a callback function when an event occurs by specifying a function for the associated
callback property. For example, to execute a callback when a read async event is generated, you use
the ReadAsyncFcn property.

If the event log is full (the number of events in the log equals the value of the EventLogMax property)
and a new event is received, the oldest event is removed to make space for the new event. You clear
the event log using the cleareventlog function.

Example

The following example creates a client and configures a group with two items. A 30-second logging
task is run, and after 10 seconds the item values are read. When the logging task stops, the event log
is retrieved and examined.

da = opcda('localhost', 'Matrikon.OPC.Simulation');
connect(da);
grp = addgroup(da, 'EvtLogExample');
itm1 = additem(grp, 'Random.Real8');
itm2 = additem(grp, 'Triangle Waves.UInt1');

11 Properties

11-2

set(grp, 'UpdateRate', 1, 'RecordsToAcquire', 30);
start(grp);
pause(10);
tid = readasync(grp);
wait(grp);
el = get(da, 'EventLog')
el = get(da, 'EventLog')

el =
1x3 struct array with fields:
 Type
 Data

Now examine the first event, which is the start event.

el(1)
ans =
 Type: 'Start'
 Data: [1x1 struct]

The Data field contains the following information.

el(1).Data
ans =
 LocalEventTime: [2004 1 13 16 16 25.1790]
 GroupName: 'EvtLogExample'
 RecordsAcquired: 0

The second event is a ReadAsync event. Examine the Data structure and the first element of the
Items structure.

el(2)
ans =
 Type: 'ReadAsync'
 Data: [1x1 struct]

el(2).Data
ans =
 LocalEventTime: [2004 1 13 16 16 35.2100]
 TransID: 2
 GroupName: 'EvtLogExample'
 Items: [2x1 struct]

el(2).Data.Items(1)
ans =
 ItemID: 'Random.Real8'
 Value: 2.4619e+003
 Quality: 'Good: Non-specific'
 TimeStamp: [2004 1 13 16 16 35.1870]

Data Types: struct

EventLogMax — Maximum number of events to store in event log
1000 (default) | double

If the event log is full (the number of events in the log equals the value of the EventLogMax
property) and a new event is received, the oldest event is removed to make space for the new event.
You clear the event log using the cleareventlog function.

 opcda Object Properties

11-3

By default, EventLogMax is set to 1000. To continually store events, specify a value of Inf. To store
no events, specify a value of 0. If EventLogMax is reduced to a value less than the number of existing
events in the event log, the oldest events are removed until the number of events is equal to
EventLogMax.
Example: 1000
Data Types: double

Group — Data Access Group objects contained by client
dagroup array

This property is read-only.

Group is a vector of dagroup objects contained by the opcda object. Group is initially an empty
vector. The size of Group increases as you add groups with the addgroup function, and decreases as
you remove groups with the delete function.

Host — DNS name or IP address of server
char

This property is read-only.

Host is the name or IP address of the machine hosting the OPC server. If you specify the host using
an IP address, no name resolution is performed on that address.
Data Types: char

Name — Descriptive name for OPC DA client object
char

The default object creation behavior is to automatically assign a name to all objects. For the opcda
object, Name follows the naming scheme 'Host/ServerID'. For the dagroup object, if a name is
not specified upon creation, the name returned by the OPC server is used, or a unique name is
automatically assigned to the group. Automatically assigned group names follow the naming scheme
'groupN' where N is an integer.

You can change the Name of an object at any time. The Name can be any character vector, and is used
for display and identification purposes only.
Data Types: char

Server ID — Server identity
char

ServerID is the COM style program ID that the opcda object connects to. The program ID is
normally defined during installation of the OPC server.

Use opcserverinfo to find a list of available servers and their server IDs.
Data Types: char

Status — Status of connection to OPC server
'disconnected' (default) | 'connected'

This property is read-only.

11 Properties

11-4

Status can be 'disconnected' or 'connected'. You connect an opcda object with the connect
function and disconnect with the disconnect function. If the opcda object is connected to a server
and the server shuts down, the Status property is set to 'disconnected'.
Example: 'connected'
Data Types: char

Tag — Label to associate with OPC object
char

You configure Tag to be a character vector value that uniquely identifies an OPC object.

Tag is particularly useful when constructing programs that would otherwise need to define the
toolbox object as a global variable, or pass the object as an argument between callback routines. You
can return a toolbox object with the opcfind function by specifying the Tag property value.
Data Types: char

Timeout — Maximum time to wait for completion of instruction to server
10 (default) | double

You configure Timeout to be the maximum time, in seconds, to wait for completion of a synchronous
read or a synchronous write operation. If a timeout occurs, the read or write operation aborts. You
can set the property to any value in the range [0 Inf]. The default value is 10.

You can use Timeout to abort functions that block access to the MATLAB command line.

For asynchronous read or write operations, Timeout specifies the time to wait for the server to
acknowledge the request. It does not limit the time for the instruction to be completed by the server.
Example: 60
Data Types: double

Type — OPC object type
char

This property is read-only.

Type indicates the type of the object. The OPC object types are 'opcda', 'dagroup', and
'daitem'. Once an object is created, the value of Type is automatically defined, and cannot be
changed.

You can identify OPC objects of a given type using the opcfind function and the Type value.
Example: 'opcda'
Data Types: char

UserData — Data to associate with OPC object
any type

You can configure UserData to store data that you want to associate with an OPC object. The object
does not use this data directly, but you can access it using the get function.

 opcda Object Properties

11-5

Callback Function Settings

ErrorFcn — Callback function file to execute when error event occurs
function handle | char | cell

You configure ErrorFcn to execute a callback function file when an error event occurs. An error
event is generated when an asynchronous transaction fails. For example, an asynchronous read on
items that cannot be read generates an error event. An error event is not generated for configuration
errors such as setting an invalid property value, nor for synchronous read and write operations.

When an Error event occurs, the function specified in ErrorFcn is passed two parameters: Obj and
EventInfo. Obj is the object associated with the event, and EventInfo is an event structure
containing the fields Type and Data. The Type field is set to 'Error'. The Data field contains a
structure with the following fields:

Field Name Description
LocalEventTime The local time (as a date vector) the event occurred.
TransID The transaction ID associated with the event.
GroupName The group name.
Items A structure containing information on each item that generated an error

during that transaction.

The Items structure array contains the following fields:

Field Name Description
ItemID The item name.
Error The error message.

The default value for ErrorFcn is @opccallback.

Note that error event information is also stored in the EventLog property.
Example: @opccallback
Data Types: char | cell | function_handle

ShutDownFcn — Callback function file to execute when OPC server shuts down
function handle | char | cell

You configure ShutDownFcn to execute a callback function file when the OPC server shuts down.
Prior to calling the ShutDownFcn callback, the Status property of the opcda object is changed to
'disconnected'.

When a shutdown event occurs, the function specified in ShutDownFcn is passed two parameters:
Obj and EventInfo. Obj is the object associated with the event, and EventInfo is an event
structure containing the fields Type and Data. The Type field is set to 'Shutdown'. The Data field
contains a structure with the following fields.

Field Name Description
LocalEventTime The time the event occurred, as a MATLAB date vector.
Reason The reason for the server shutdown.

11 Properties

11-6

Shutdown event information is stored in the EventLog property.
Example: @opccallback
Data Types: char | cell | function_handle

TimerFcn — Callback function file to execute when predefined period passes
function handle | char | cell

You configure TimerFcn to execute a callback function file when a timer event occurs. A timer event
occurs when the time specified by the TimerPeriod property passes. Timer events are only generated
when the Status property is set to 'connected'. Timer events will stop being generated when the
object's Status is set to 'disconnected', either by a disconnect function call, or when the server
shuts down.

Some timer events may not be processed if your system is significantly slowed or if the TimerPeriod
value is too small. Timer event information is not stored in the EventLog property.
Example: @timercallback
Data Types: char | cell | function_handle

TimerPeriod — Period between timer events
10 (default) | double

TimerPeriod specifies the time, in seconds, that must pass before the callback function specified by
TimerFcn is called. The setting can be any value in the range [0.001 Inf]. The default value is 10.

Some timer events might not be processed if your system is significantly slowed or if the
TimerPeriod value is too small.
Example: 1
Data Types: double

Version History
Introduced before R2006a

See Also
Properties
dagroup Object Properies Properties | daitem Object Properties Properties

Functions
opcda

 opcda Object Properties

11-7

dagroup Object Properties
Configure OPC dagroup object

Description
Use the properties of the dagroup object to control reading, writing, logging, and so on.

Properties
General Settings

DeadbandPercent — Percentage change in item value that causes subscription callback
0 (default) | 0-100

You configure DeadbandPercent to a value between 0 and 100. The default value is 0, which
specifies that any value change will update the OPC server's cache. A non-zero value results in the
cache value being updated only if the difference between the cached value and the current value of
the item exceeds:

DeadbandPercent * (High EU - Low EU) / 100 (11-1)

The DeadbandPercent property affects only items that have an analog data type and 'High EU'
and 'Low EU' properties defined (property IDs 102 and 103, respectively). You can query data types
and item properties using serveritemprops.

Note OPC servers might not implement the DeadbandPercent property behavior, even for values
that have High EU and Low EU properties defined. For servers that do not support
DeadbandPercent, an error is generated if you attempt to set the DeadbandPercent property to a
value other than 0.

DeadbandPercent is applied group-wide for all analog daitem objects, and is used to prevent noisy
signals from updating the client unnecessarily.
Example: 10
Data Types: double

GroupType — Public status of dagroup object
'private' (default) | 'public'

This property is read-only.

GroupType indicates whether a group is private or public. A private group is local to the opcda
client, and other clients must create their own private groups. A public group is available from the
server for other OPC clients on the network.
Example: 'private'
Data Types: char

11 Properties

11-8

Item — Data access item objects contained in group
array of daitem objects

This property is read-only.

Item is a vector of daitem objects contained in the dagroup object. Item is initially an empty
vector. The size of Item increases as you add items with the additem function, and decreases as you
remove items with the delete function.
Data Types: daitem

Name — Descriptive name for OPC DA group object
char

The default object creation behavior is to automatically assign a name to all objects. For the opcda
object, Name follows the naming scheme 'Host/ServerID'. For the dagroup object, if a name is
not specified upon creation, the name returned by the OPC server is used, or a unique name is
automatically assigned to the group. Automatically assigned group names follow the naming scheme
'groupN' where N is an integer.

You can change the Name of an object at any time. The Name can be any character vector, and is used
for display and identification purposes only.
Data Types: char

Parent — OPC object that contains this dagroup object
OPC DA client object

This property is read-only.

For dagroup objects, Parent indicates the opcda client object that contains the group.
Data Types: DA client object

Tag — Label to associate with OPC object
char

You configure Tag to be a character vector value that uniquely identifies an OPC object.

Tag is particularly useful when constructing programs that would otherwise need to define the
toolbox object as a global variable, or pass the object as an argument between callback routines. You
can return a toolbox object with the opcfind function by specifying the Tag property value.
Data Types: char

TimeBias — Time bias of group
0 (default) | double

This property is read-only.

TimeBias indicates the time difference between the server and client machines. In some cases the
data might have been collected by a device operating in a time zone other than that of the client.
Then it is useful to know what the time of the device was when the data was collected (e.g., to
determine what shift was on duty at the time).

The time is indicated in minutes, and can be positive or negative.

 dagroup Object Properties

11-9

Example: 60
Data Types: double

Type — OPC object type
char

This property is read-only.

Type indicates the type of the object. The OPC object types are 'opcda', 'dagroup', and
'daitem'. Once an object is created, the value of Type is automatically defined, and cannot be
changed.

You can identify OPC objects of a given type using the opcfind function and the Type value.
Example: 'dagroup'
Data Types: char

UpdateRate — Rate, in seconds, at which subscription callbacks occur
0.5 (default) | double

UpdateRate specifies the rate, in seconds, at which subscription callbacks occur. This determines
how often the cached data can be updated and how often data change events can occur.
Consequently, UpdateRate also controls the rate at which data is logged. You start logging data
change events with the start function.

Data change events can occur only for active items in an active group. Additionally, subscription must
be enabled for the group.

Servers can select an update rate that differs from the requested value. If this occurs, UpdateRate is
automatically updated with the returned value. By specifying an update rate of 0, updates will occur
as soon as new information becomes available for the daitem object. New information is considered
to be a change in the Quality property, or a change in the data Value that exceeds the
DeadbandPercent property value.
Example: 1.0
Data Types: double

UserData — Data to associate with OPC object
any type

You can configure UserData to store data that you want to associate with an OPC object. The object
does not use this data directly, but you can access it using the get function.

Callback Function Settings

CancelAsyncFcn — Callback function to execute when asynchronous operation is canceled
@opccallback (default) | function handle | char | cell

You configure CancelAsyncFcn to execute a callback function when a cancel async event occurs. A
cancel async event occurs after an asynchronous read or write operation is canceled.

When a cancel async event occurs, the function specified in CancelAsyncFcn is passed two
parameters: Obj and EventInfo. Obj is the object associated with the event, and EventInfo is an
event structure containing the fields Type and Data. The Type field is set to 'CancelAsync'. The
Data field contains a structure with the fields shown below.

11 Properties

11-10

Field Name Description
LocalEventTime The time, as a MATLAB date vector, that the event occurred.
TransID The transaction ID of the canceled read or write asynchronous

operation.
GroupName The group name.

Cancel async event information is stored in the EventLog property.
Example: @opccallback
Data Types: char | cell | function_handle

DataChangeFcn — Callback function to execute when data change event occurs
function handle | char | cell

You configure DataChangeFcn to execute a callback function when a data change event occurs. A
data change event occurs for subscribed active items within an active group when the value or
quality of the item has changed. The events will happen no faster than the time specified for the
UpdateRate property of the group. The DeadbandPercent property is used to determine what
percentage change in the value or quality initiates the callback. A data change event is only
generated when both the Active and Subscription properties are 'on'.

When a data change event occurs, the function specified in DataChangeFcn is passed two
parameters: Obj and EventInfo. Obj is the object associated with the event, and EventInfo is an
event structure containing the fields Type and Data. The Type field is set to 'DataChange'. The
Data field contains a structure with the fields defined below.

Field Name Description
LocalEventTime The time, as a MATLAB date vector, that the event occurred
TransID 0, or the Refresh transaction ID if the data change event was generated

by refresh
GroupName The group name
Items A structure containing information about each item whose value or

quality updated

The Items structure contains the fields defined below.

Field Name Description
ItemID The item name
Value The data value
TimeStamp The time, as a MATLAB date vector, that the server's cache was updated

Data change event information is not stored in the EventLog property
Example: @readNewData
Data Types: char | cell | function_handle

ReadAsyncFcn — Callback function to execute when asynchronous read completes
@opccallback (default) | function handle | char | cell

 dagroup Object Properties

11-11

You configure ReadAsyncFcn to execute a callback function when an asynchronous read operation
completes. You execute an asynchronous read with the readasync function. A read async event
occurs immediately after the data is returned by the server to the MATLAB workspace.

When a read async event occurs, the function specified in ReadAsyncFcn is passed two parameters:
Obj and EventInfo. Obj is the object associated with the event, and EventInfo is an event
structure containing the fields Type and Data. The Type field is set to 'ReadAsync'. The Data field
contains a structure with the fields defined below.

Field Name Description
LocalEventTime The time, as a MATLAB date vector, that the event occurred.
TransID The transaction ID for the asynchronous read operation.
GroupName The group name.
Items A structure containing information about each item whose value or

quality updated.

The Items structure contains the fields defined below.

Field Name Description
ItemID The item name.
Value The data value.
TimeStamp The time, as a MATLAB date vector, that the server's cache was updated.

Read async event information is stored in the EventLog property.
Example: @opccallback
Data Types: char | cell | function_handle

RecordsAcquiredFcn — Callback function to execute when RecordsAcquired event occurs
function handle | char | cell

You configure RecordsAcquiredFcn to execute a callback function file when a records acquired
event is generated. A records acquired event is generated each time the RecordsAcquired property
reaches a multiple of RecordsAcquiredFcnCount.

When a records acquired event occurs, the function specified in RecordsAcquiredFcn is passed two
parameters: Obj and EventInfo. Obj is the object associated with the event, and EventInfo is an
event structure containing the fields Type and Data. The Type field is set to 'RecordsAcquired'.
The Data field contains a structure with the fields defined below.

Field Name Description
LocalEventTime The time, as a MATLAB date vector, that the event occurred
GroupName The group name
RecordsAcquired The number of records acquired in the current logging session at the

time the event occurred

Records acquired event information is not stored in the EventLog property.
Example: @readNewRecords

11 Properties

11-12

Data Types: char | cell | function_handle

RecordsAcquiredFcnCount — Number of records to acquire before RecordsAcquired event
occurs
20 (default) | positive integer

A records acquired event is generated each time the number of records acquired reaches a multiple
of RecordsAcquiredFcnCount.
Example: 20
Data Types: double

StartFcn — Callback function to execute immediately before logging starts
function handle | char | cell

You configure StartFcn to execute a callback function when all prelogging steps have been
completed. You start logging by calling the start function. A start event occurs immediately before
Logging is set to 'on'.

When a start event occurs, the function specified in StartFcn is passed two parameters: Obj and
EventInfo. Obj is the object associated with the event, and EventInfo is an event structure
containing the fields Type and Data. The Type field is set to 'Start'. The Data field contains a
structure with the fields given below.

Field Name Description
LocalEventTime The time, as a MATLAB date vector, that the event occurred.
GroupName The group name.
RecordsAcquired The number of records acquired in the current logging session at the

time the event occurred.

Start event information is stored in the EventLog property.
Example: @opcLogStart
Data Types: char | cell | function_handle

StopFcn — Callback function to execute immediately after logging stops
function handle | char | cell

You configure StopFcn to execute a callback function when logging has stopped. Logging stops when
you issue a stop command, or when the RecordsAcquired value reaches RecordsToAcquire.

When a stop event occurs, the function specified in StopFcn is passed two parameters: Obj and
EventInfo. Obj is the object associated with the event, and EventInfo is an event structure
containing the fields Type and Data. The Type field is set to 'Stop'. The Data field contains a
structure with the fields given below.

Field Name Description
LocalEventTime The time, as a MATLAB date vector, that the event occurred.
GroupName The group name.
RecordsAcquired The number of records acquired in the current logging session at the

time the event occurred.

 dagroup Object Properties

11-13

Stop event information is stored in the EventLog property.
Example: @opcLogStop
Data Types: char | cell | function_handle

WriteAsyncFcn — Callback function to execute when asynchronous write completes
@opccallback (default) | function handle | char | cell

You configure WriteAsyncFcn to execute a callback function file when an asynchronous write
operation completes. You execute an asynchronous write with the writeasync function. A write
async event occurs immediately after the server notifies the client that data has written to the device.

When a write async event occurs, the function specified in WriteAsyncFcn is passed two
parameters: Obj and EventInfo. Obj is the object associated with the event, and EventInfo is an
event structure containing the fields Type and Data. The Type field is set to 'WriteAsync'. The
Data field contains a structure with the fields defined below.

Field Name Description
LocalEventTime The time, as a MATLAB date vector, that the event occurred.
TransID The transaction ID for the asynchronous write operation.
GroupName The group name.
Items A structure containing information about each item whose value or

quality was written.

The Items structure contains the fields defined below.

Field Name Description
ItemID The item name.

Write async event information is stored in the EventLog property.
Example: @opccallback
Data Types: char | cell | function_handle

Subscription and Logging Settings

Active — Group activation state
'on' (default) | 'off'

Active can be 'on' or 'off'. If Active is 'on', the OPC server will return data for the group or
item when requested by the read function or when the corresponding data items change
(subscriptions). If Active is 'off', the OPC server will not return information about the group or
item.

By default, Active is set to 'on' when you create the dagroup object. Set Active to 'off' when
you are temporarily not interested in that daitem or dagroup object's values. You configure Active
for both dagroup and daitem objects. Changing the state of the group does not change the state of
the items.

The activation state of a dagroup or daitem object affects reads and subscriptions, and depends on
whether the data is obtained from the cache or from the device. The active state of a group or item
affects operations as follows.

11 Properties

11-14

Operation Source Active State
read Cache Both group and items must be active. Inactive items in

active groups, and all items in inactive groups, return bad
quality.

read Device Active is ignored.
write N/A Active is ignored.
Subscription N/A Both group and items must be active. Inactive items in

active groups, and all items in inactive groups, return bad
quality.

readasync N/A Active is ignored.

A transition from 'off' to 'on' results in a change in quality, and causes a subscription callback for
the item or items affected. Changing the Active state from 'on' to 'off' will cause a change in
quality but will not cause a callback since by definition callbacks do not occur for inactive items.

You enable subscription callbacks with the Subscription property. Use the DataChangeFcn property to
specify a callback function file to execute when a data change event occurs.
Example: 'on'
Data Types: char

LogFileName — Name of disk file to which logged data is written
'opcdatalog.olf' (default) | char

When you start a logging operation using the start function, and the LoggingMode property is set to
'disk' or 'disk&memory', then DataChange events (records) are logged to a disk file with the
name specified by LogFileName. You can specify any value for LogFileName as long as it conforms
to the operating system file naming conventions. If no extension is specified as part of LogFileName,
then .olf is used.

If a log file with the same name as LogFileName already exists when logging is started, the
LogToDiskMode property is used to determine whether to overwrite the existing file, append records
to that file, or create an indexed file based on LogFileName.

The log file is an ASCII file in comma-separated variable format, arranged as follows:

DataChange: LocalEventTime
ItemID1, Value1, Quality1, TimeStamp1
ItemID2, Value2, Quality2, TimeStamp2
...
ItemIDN, ValueN, QualityN, TimeStampN
DataChange: <LocalEventTime>
ItemID1, Value1, Quality1, TimeStamp1
ItemID2, Value2, Quality2, TimeStamp2
...
ItemIDN, ValueN, QualityN, TimeStampN
...

Example: 'opcdatalog.olf'
Data Types: char

Logging — Status of data logging
'off' (default) | 'on'

 dagroup Object Properties

11-15

This property is read-only.

Logging is automatically set to 'on' when you issue a start command. Logging is automatically
set to 'off' when you issue a stop command, or when the requested number of records is logged.
You specify the number of records to log with the RecordsToAcquire property.

When Logging is 'on', each DataChange event (a record) is stored to disk or to memory (the
buffer) as defined by the LoggingMode property.
Example: 'on'
Data Types: char

LoggingMode — Specify destination for logged data
'memory' (default) | 'disk' | 'disk&memory'

LoggingMode can be set to 'disk', 'memory', or 'disk&memory', with the following effects:

• 'disk' — DataChange events (records) are stored to the disk file specified by LogFileName.
• 'memory' (default) — Records are stored to memory (the buffer).
• 'disk&memory' — Records are stored to memory and to a disk file.

The disk file or memory buffer contains data logged from the time you issue the start command,
until the time you issue a stop command or the number of records specified by the
RecordsToAcquire property has been logged. Each DataChange event constitutes one record,
containing one or more items. Only items that change value or quality are included in a DataChange
event. The logged data includes the ItemID, Value, TimeStamp, and Quality for each item that
changed.

Note that when you issue a refresh command while the toolbox is logging, the results of that
operation are included in the log, since a refresh forces a DataChange event on the OPC server.

You extract data from memory with the getdata function. You can return the data stored in a log file
to the MATLAB workspace with the opcread function.
Example: 'disk'
Data Types: char

LogToDiskMode — Method of disk file handling for logged data
'index' (default) | 'append' | 'overwrite'

LogToDiskMode can be set to 'append', 'overwrite', or 'index', with the following effects:

• 'append' — Data for a logged session is added to any data that already exists in the log file when
logging is started using the start command.

• 'overwrite' — The log file is overwritten each time start is called.
• 'index' (default) — A different disk file is created each time start is called, according to the

following rules:

1 The first log file name attempted is specified by the initial value of LogFileName.
2 If the attempted file name exists, then a numeric identifier is added to the value of

LogFileName. For example, if LogFileName is initially specified as 'groupRlog.olf', then
groupRlog.olf is the first attempted file, groupRlog01.olf is the second file name, and
so on. If the LogFileName already contains numbers as the last characters in the file name,

11 Properties

11-16

then that number is incremented to create the new log file name. For example, if the
LogFileName is specified as 'groupLog003.olf', then the next file name would be
'groupLog004.olf'.

3 The actual file name used is the first file name that does not exist. In this way, each
consecutive logging operation is written to a different file, and no previous data is lost.

Separate dagroup objects are logged to separate files. If two dagroup objects have the same value
for LogFileName, then attempting to log data from both objects simultaneously results in the second
object failing during the start operation.
Example: 'append'
Data Types: char

RecordsAcquired — Number of records acquired
0 (default) | double

This property is read-only.

RecordsAcquired is continuously updated to reflect the number of records acquired since the
start function was called. When you issue a start command, the group object resets the value of
RecordsAcquired to 0 and flushes the memory buffer.

To find out how many records are available in the buffer, use the RecordsAvailable property. You can
also configure the RecordsAcquiredFcn to generate an event each time a particular number of
records have been acquired.
Example: 20
Data Types: double

RecordsAvailable — Number of records available in toolbox engine
0 (default) | double

This property is read-only.

RecordsAvailable indicates the number of records that are available in the Industrial
Communication Toolbox software engine. When you extract records from the engine with the
getdata function, the RecordsAvailable value reduces by the number of records extracted.
RecordsAvailable is reset to 0 and the toolbox engine is cleared when you issue a start
command.

Use the RecordsAcquired property to find out how many records have been acquired since the start
command was issued.
Example: 20
Data Types: double

RecordsToAcquire — Number of records to acquire for logging session
120 (default) | double

RecordsToAcquire specifies the number of records that must be acquired before the engine
automatically stops logging. When RecordsAcquired reaches RecordsToAcquire, the Logging
property is set to 'off', and no more records are logged.

To continuously log records, specify a value of Inf.

 dagroup Object Properties

11-17

Example: 480
Data Types: double

Subscription — Enable server update when data changes
'on' (default) | 'off'

Subscription can be 'on' or 'off'. If Subscription is 'on', server update notification is
enabled for the group. The update occurs when the server cache quality or value of the data
associated with a daitem object contained by the dagroup object changes. In order for the server
cache to be updated, the percent change in the item value must also be greater than the value
specified for the DeadbandPercent property.

A Subscription value of 'on' instructs the server to issue data change events when items in the
group are updated by the server. Additionally, if an callback function file is specified for the
DataChangeFcn property, that function executes. If Subscription is 'off', the server might still
update item values or quality information, but no data change event is generated.

Note that the refresh function is a special case of subscription, where refresh forces a data
change event for all active items.
Example: 'on'
Data Types: char

Version History
Introduced before R2006a

See Also
Properties
opcda Object Properties Properties | daitem Object Properties Properties

Functions
addgroup

11 Properties

11-18

daitem Object Properties
Configure OPC daitem object

Description
Use the properties of the daitem object to examine item values, quality, timestamps, types, and so
on.

Properties
General Settings

AccessRights — Inherent nature of access to item
'read' | 'read/write' | 'write'

This property is read-only.

AccessRights represents the server’s ability to access a single OPC data item. The property value
can be 'read', 'write', or 'read/write', with the following effects:

• 'read' — You can read the server item's value.
• 'write' — You can write values to the server item.
• 'read/write' — You can read and change the server item's value. If you attempt a read or write

operation on an item that does not have the required access rights, the server might return an
error.

The value is set by the server when an item is created.
Example: 'read'
Data Types: char

CanonicalDataType — Server's data type for item
char

This property is read-only.

CanonicalDataType indicates the data type of the item as stored on the OPC server. The MATLAB
supported data types are indicated in the DataType property.

You can specify that the item's value is stored in the daitem object using a data type that differs from
the canonical data type by setting the DataType property of the item to a value different from
CanonicalDataType. Translation between the CanonicalDataType and the DataType is
automatic.

Refer to the DataType property reference for a listing of the COM Variant data types and their
equivalent MATLAB data types.
Data Types: char

 daitem Object Properties

11-19

DataType — OPC client item's data type
char

DataType indicates the data type of the item as stored in the daitem object in the MATLAB
workspace. You can specify the data type when the item is created using the additem function. If you
do not specify a data type, or if the requested data type is rejected by the server, the canonical
(native) data type is used. If the client associated with the item is not connected, the data type is set
to until the client is connected.

The OPC server uses this data type to store the item value. The CanonicalDataType property of a
daitem object provides information on the canonical data type of that item on the server.

OPC communication uses COM Variant data types to send information between the server and client.
These are automatically translated to an equivalent MATLAB data type for the COM Variant types
defined below. Any data type not included in this list is returned as 'unknown'.

OPC Data Type COM Data Type MATLAB Data Type
double VT_R8 double
char VT_BSTR char
single VT_R4 single
uint8 VT_UI1 uint8
uint16 VT_UI2 uint16
uint32 VT_UI4 uint32
uint64 VT_UI8 uint64
int8 VT_I1 int8
int16 VT_I2 int16
int32 VT_I4 int32
int64 VT_I8 int64
currency VT_CY double
date VT_DATE double
logical VT_BOOL logical
double VT_EMPTY Empty array ([])

Example: 'double'
Data Types: char

ItemID — Fully qualified ID on OPC server
char

ItemID is the fully qualified ID of the data item on the OPC server. The server uses the ItemID to
return the appropriate data from the server's cache, or to read and send data to a specific device or
location.

You obtain valid ItemID values for a particular server by querying that server's name space using the
getnamespace or serveritems functions.
Data Types: char

11 Properties

11-20

Parent — OPC object that contains this daitem object
OPC DA group object

This property is read-only.

For daitem objects, Parent indicates the dagroup object that contains the daitem object.
Data Types: DA group object

Quality — Quality of data value
Bad (default) | Good | Uncertain

This property is read-only.

Quality indicates the quality of the daitem object’s Value property as a character vector. You can
use the Quality property to determine if a value is useful or not.

The Quality is made up of a major quality, a substatus, and an optional limit status, arranged as a
character vector in the format 'Major: Substatus: Limit status'. The limit status part is
omitted if the value is not limited. The major quality can be one of the following values:

Value Description
Bad The value is not useful for reasons indicated by the substatus.

The default value is 'Bad: Out of Service'.
Good The value is of good quality.
Uncertain The quality of the value is uncertain for reasons indicated by the

Substatus.

For a list of substatus and limit status values and their interpretations, see “OPC Quality” on page A-
2.

Quality is updated when you perform a read operation using read or readasync, or when a
subscription callback occurs. Quality is also returned during a synchronous read operation.
Example: 'Bad: Out of Service'
Data Types: char

QualityID — Quality of data value as 16-bit integer
28 (default) | integer from 0 to 65535

This property is read-only.

QualityID is a numeric indication of the quality of the daitem object's data value.

QualityID is a number ranging from 0 to 65535, made up of four parts. The high 8 bits of the
QualityID represent the vendor-specific quality information. The low 8 bits are arranged as
QQSSSSLL, where QQ represents the major quality, SSSS represents the quality substatus, and LL
represents the limit status.

You use the opcqparts function to extract the four quality fields from the QualityID value.
Alternatively, you can use the bit-wise functions to extract the fields you are interested in. For
example, to extract the major quality, you can bit-wise AND the QualityID with 192 (the decimal

 daitem Object Properties

11-21

equivalent of binary 11000000) using the bitand function, and shift the result 6 bits to the right
using the bitshift function.

You use the opcqstr function to obtain the four quality fields from the QualityID value.

For more information, see “OPC Quality” on page A-2.

QualityID is updated when you perform a read operation using read or readasync, or when a
subscription callback occurs.
Example: 28
Data Types: double

ScanRate — Fastest possible data update rate
double

ScanRate describes the fastest possible rate at which a server can update an item. The default value
is 0, which indicates that the scan rate is not known. Note that the scan rate might not be attainable
by the server due to network load, server load, and other factors.

The value is initially set by the server when a daitem object is created or when you connect to the
server.
Data Types: double

Tag — Label to associate with OPC object
char

You configure Tag to be a character vector value that uniquely identifies an OPC object.

Tag is particularly useful when constructing programs that would otherwise need to define the
toolbox object as a global variable, or pass the object as an argument between callback routines. You
can return a toolbox object with the opcfind function by specifying the Tag property value.
Data Types: char

TimeStamp — Time when item was last read
date vector

This property is read-only.

TimeStamp indicates the time when the Value and Quality properties were obtained by the device (if
this is available) or the time the server updated or validated Value and Quality in its cache.
TimeStamp is updated when you perform an asynchronous or synchronous read operation or when a
subscription callback occurs.

TimeStamp is stored as a MATLAB date vector. You can convert date vectors to date character
vectors with the datestr function, and to MATLAB date numbers with the datenum function.
Data Types: date vector

Type — OPC object type
char

This property is read-only.

11 Properties

11-22

Type indicates the type of the object. The OPC object types are 'opcda', 'dagroup', and
'daitem'. Once an object is created, the value of Type is automatically defined, and cannot be
changed.

You can identify OPC objects of a given type using the opcfind function and the Type value.
Example: 'daitem'
Data Types: char

UserData — Data to associate with OPC object
any type

You can configure UserData to store data that you want to associate with an OPC object. The object
does not use this data directly, but you can access it using the get function.

Value — Item value
any MATLAB data type

This property is read-only.

Value indicates the value that was last obtained from the OPC server for the item defined by the
ItemID property. The data type of the value is given by the DataType property.

The value returned from the server may be different from the value of the device to which the
ItemID refers, if the DeadbandPercent for the daitem object's parent group is not zero. The value is
also updated only periodically, based on the parent group's Active and UpdateRate properties.

You determine the validity of Value by checking the Quality property for the item.

Value is updated when you perform an asynchronous or synchronous read operation or when a
subscription callback occurs.

Subscription and Logging Settings

Active — Item activation state
'on' (default) | 'off'

Active can be 'on' or 'off'. If Active is 'on', the OPC server will return data for the group or
item when requested by the read function or when the corresponding data items change
(subscriptions). If Active is 'off', the OPC server will not return information about the group or
item.

By default, Active is set to 'on' when you create the daitem object. Set Active to 'off' when
you are temporarily not interested in that daitem object's values. You configure Active for both
dagroup and daitem objects. Changing the state of the group does not change the state of the
items.

The activation state of a dagroup or daitem object affects reads and subscriptions, and depends on
whether the data is obtained from the cache or from the device. The active state of a group or item
affects operations as follows.

 daitem Object Properties

11-23

Operation Source Active State
read Cache Both group and items must be active. Inactive items in

active groups, and all items in inactive groups, return bad
quality.

read Device Active is ignored.
write N/A Active is ignored.
Subscription N/A Both group and items must be active. Inactive items in

active groups, and all items in inactive groups, return bad
quality.

readasync N/A Active is ignored.

A transition from 'off' to 'on' results in a change in quality, and causes a subscription callback for
the item or items affected. Changing the Active state from 'on' to 'off' will cause a change in
quality but will not cause a callback since by definition callbacks do not occur for inactive items.

You enable subscription callbacks with the Subscription property. Use the DataChangeFcn property to
specify a callback function file to execute when a data change event occurs.
Example: 'on'
Data Types: char

Version History
Introduced before R2006a

See Also
Properties
opcda Object Properties Properties | dagroup Object Properies Properties

Functions
additem

11 Properties

11-24

Historical Data Access User's Guide

25

Introduction to OPC Historical Data
Access (HDA)

• “OPC Historical Data Access” on page 12-2
• “Discover Available HDA Servers” on page 12-4
• “Connect to OPC HDA Servers” on page 12-5

12

OPC Historical Data Access
The OPC Historical Data Access (HDA) standard provides an interoperable platform to store and
exchange historical process data. This standard differs from the OPC Data Access (DA) specification
that deals only with real-time data. Industrial Communication Toolbox software provides a client
interface to historical data access servers via the MATLAB environment. This client interface lets you:

• Retrieve data from HDA servers into MATLAB
• Preprocess that data for common analysis tasks
• Visualize the data for easy interpretation

There are several types of OPC HDA historians:

• Simple trend data servers function only as basic raw data storage. The data itself would be of the
type commonly made available by an OPC data access server and would take the form of value,
quality, and timestamp triplets.

• Complex data compression and analysis servers provide data compression in addition to raw data
storage. These servers are used where large volumes of process data are expected and storage
space would be a limiting factor.

• Analysis servers are capable of providing analysis and summary information. They can support the
updating of data and store the history of those updates. Storing data annotations may also be
supported.

Industrial Communication Toolbox provides capabilities for reading raw and processed data from
OPC HDA servers. Updating data on an HDA server and retrieving annotations is not supported.

Measurements from process end points (sensors, PLCs, etc.) are represented in the OPC HDA
infrastructure as “items”. Each item has a unique item ID on the server, and therefore can be
accessed uniquely. To best arrange the items, the server orders the items into a logical listing called a
“name space.” These name spaces often take the form of a hierarchical tree in which groups of
similar items are arranged into logical categories:

12 Introduction to OPC Historical Data Access (HDA)

12-2

An item is usually represented by its fully qualified item ID (FQID) within the name space. An FQID is
usually comprised of each level of the item’s hierarchy separated by periods. For example:

Root.Branch1.Leaf3

In some cases, as in very small or simple historians, a hierarchical structure is not used. Instead all
items are presented as a flat list of items.

 OPC Historical Data Access

12-3

Discover Available HDA Servers

In this section...
“Prerequisites” on page 12-4
“Determine HDA Server IDs for a Host” on page 12-4

Prerequisites
To interact with an OPC server, you must provide:

• The host name of the computer on which the OPC server is installed. Typically the host name is a
descriptive term (such as 'plantserver') or an IP address (such as 192.168.2.205).

• The server ID of the server you want to access on that host. Because a single computer can host
multiple OPC servers, each server installed on that computer is given a unique ID during
installation.

Your network administrator can provide the host names for all computers with OPC servers on your
network. You can also obtain a list of server IDs for each host on your network, or use the
opcserverinfo function to access server IDs from a host, as described next.

Determine HDA Server IDs for a Host
When an OPC server is installed, it must be assigned a unique server ID. This server ID provides a
unique name for a particular instance of an OPC server on a host, even if multiple copies of the same
server software are installed on that same machine.

To determine the server IDs of the OPC servers installed on a host, call the opchdaserverinfo
function, specifying the host name as the only argument. When called with this syntax, the function
returns a structure containing information about all the OPC servers available on that host:
info =
1x4 OPC HDA ServerInfo array:
 index Host ServerID HDASpecification Description
 ----- --------- --------------------------------- -------- --
 1 localhost Advosol.HDA.Test.3 HDA1 Advosol HDA Test Server V3.0
 2 localhost IntegrationObjects.OPCSimulator.1 HDA1 Integration Objects OPC DA DX HDA Simulator 2
 3 localhost IntegrationObjects.OPCSimulator.1 HDA1 Integration Objects' OPC DA/HDA Server Simulator
 4 localhost Matrikon.OPC.Simulation.1 HDA1 MatrikonOPC Server for Simulation and Testing

The fields in the structure returned by opchdaserverinfo provide this information:

Server Information Returned by opchdaserverinfo

Field Description
Host Character vector that identifies the name of the host. Note that no

name resolution is performed on an IP address.
ServerID Cell array containing the server IDs of all OPC servers accessible

from that host.
HDASpecification Cell array containing the OPC Specification that the server provides.
Description Cell array containing descriptive text for each server.

12 Introduction to OPC Historical Data Access (HDA)

12-4

Connect to OPC HDA Servers

Overview
After getting information about your OPC servers as described in “Discover Available HDA Servers”
on page 12-4, you can establish a connection to the server by creating an OPC HDA client object, and
connecting that client to the server. These steps are described next.

Note To run the sample code in the following steps you need the Matrikon OPC Simulation Server on
your local machine. For installation details, see “Install an OPC DA or HDA Simulation Server for OPC
Classic Examples” on page 1-14. The code requires only minor changes to work with other servers.

Create an HDA Client Object
Industrial Communication Toolbox does not use groups when dealing with HDA server items. Instead,
the items themselves are passed to the available functions. These functions are accessible through
the OPC HDA client object. In most cases, functions accessed via this HDA client object return an
opc.hda.Data object. These data object simplify the display and manipulation of the historical data
retrieved from the HDA server.

To create an OPC HDA client object, call the opchda function, specifying the host name and server
ID. You retrieved this information using the opchdaserverinfo function (described in “Discover
Available HDA Servers” on page 12-4). This example creates an OPC HDA client object to represent
the connection to a Matrikon OPC Simulation Server:

hdaClient = opchda('localhost','Matrikon.OPC.Simulation.1');

View a Summary of a Client Object
To view a summary of the characteristics of the OPC HDA client object you created, enter the variable
name you assigned to the object at the command prompt. For example, this is the summary for the
hdaClient object:

hdaClient =
OPC HDA Client localhost/Matrikon.OPC.Simulation.1:
 Host: localhost
 ServerID: Matrikon.OPC.Simulation.1
 Timeout: 10 seconds
 Status: disconnected
 Aggregates: -- (client is disconnected)
ItemAttributes: -- (client is disconnected)
Methods

Connect an OPC HDA Client Object to the HDA Server
Use the connect function to connect a client to the server:

connect(hdaClient);

After connecting to the server, the Status information in the client summary display changes from
disconnected to connected. If the client could not connect to the server (for example, if the OPC

 Connect to OPC HDA Servers

12-5

server is shut down), an error message appears. For information on troubleshooting connections to
an OPC server, see “Troubleshooting OPC Issues” on page 1-17. After connecting to the client to the
server, you can request a list of available aggregate types with the hdaClient.Aggregates
function, as well as available item attributes with hdaClient.ItemAttributes. While connected
you can browse the OPC server name space for information on available server items. See the next
section for details on browsing the server name space. You can list the HDA functions with
methods(hdaClient).

Browse the OPC Server Name Space
A connected client object allows you to interact with the OPC server to obtain information about the
name space of that server. The server name space provides access to all the data points provided by
the OPC server by naming each data point with a server item, and then arranging those server items
into a name space that provides a unique identifier for each server item.

The next section describes how to obtain a server name space or a partial server name space, using
the getnamespace and serveritems functions.

Get an OPC HDA Server Name Space
Use the getnamespace function to retrieve the name space from an OPC HDA server. You must
specify the client object that is connected to the server that you are interested in. The name space is
returned as a structure array containing information about each node in the name space.

This example retrieves the name space of the Matrikon OPC Simulation Server installed on the local
host:

hdaClient = opchda('localhost','Matrikon.OPC.Simulation.1');
connect(hdaClient);
ns = getnamespace(hdaClient)

ns =

3x1 struct array with fields:
 Name
 FullyQualifiedID
 NodeType
 Nodes

This table describes the fields of the structure:

Field Description
Name The name of the node, as a character vector.
FullyQualifiedID The fully qualified item ID of the node, as a character vector. The fully

qualified item ID is made up of the path to the node, concatenated with
'.' characters. Use the fully qualified item ID when creating an item
object associated with this node.

NodeType The type of node. NodeType can be 'branch' (contains other nodes) or
'leaf' (contains no other branches).

Nodes Child nodes. Nodes is a structure array with the same fields as ns,
representing the nodes contained in this branch of the name space.

12 Introduction to OPC Historical Data Access (HDA)

12-6

From the previous above, exploring the name space shows:

ns(1)

ans =
 Name: 'Simulation Items'
 FullyQualifiedID: 'Simulation Items'
 NodeType: 'branch'
 Nodes: [8x1 struct]

ns(3)

 Name: 'Clients'
 FullyQualifiedID: 'Clients'
 NodeType: 'leaf'
 Nodes: []

From this information, the first node is a branch node called 'Simulation Items'. Since it is a
branch node, it is most likely not a valid server item. The third node is a leaf node (containing no
other nodes) with a fully qualified ID of 'Clients'. Since this node is a leaf node, it is most likely a
server item that can be monitored by creating an item object. To examine the nodes further down the
tree, reference the Nodes field of a branch node. For example, the first node contained within the
'Simulation Items' node is obtained as follows:

ns(1).Nodes(1)

ans =
 Name: 'Bucket Brigade'
 FullyQualifiedID: 'Bucket Brigade.'
 NodeType: 'branch'
 Nodes: [14x1 struct]

The returned result shows that the first node of 'Simulation Items' is a branch node named
'Bucket Brigade', and contains 14 nodes.

ns(1).Nodes(1).Nodes(9)

ans =
 Name: 'Real8'
 FullyQualifiedID: 'Bucket Brigade.Real8'
 NodeType: 'leaf'
 Nodes: []

The ninth node in 'Bucket Brigade' is named 'Real8' and has a fully qualified ID of 'Bucket
Brigade.Real8'. Use the fully qualified ID to refer to that specific node in the server name space
when creating items.

 Connect to OPC HDA Servers

12-7

Using OPC HDA Client Objects

• “OPC HDA Objects” on page 13-2
• “Locate an OPC HDA Server” on page 13-3
• “Create an OPC HDA Client Object” on page 13-4
• “Connect to the OPC HDA Server” on page 13-5
• “Set Client Properties” on page 13-6
• “Retrieve an OPC HDA Server Name Space” on page 13-7
• “Read Item Attributes” on page 13-9

13

OPC HDA Objects
Industrial Communication Toolbox uses MATLAB objects to implement OPC HDA client functionality.
The OPC HDA client object allows you to connect to the server and, when a connection is established,
to access information about the server, retrieve the server's name space, and read data from the
server. See “Create an OPC HDA Client Object” on page 13-4 for information on creating a client
object.

By default, when data is read from the historian, the results are returned as OPC HDA data objects.
These data objects provide a structured mechanism for storing OPC HDA data. Using data objects,
you can visualize and manipulate historical data for later processing in MATLAB.

Before creating and connecting an OPC HDA client object to an OPC HDA server, you must locate the
server on a particular host. The following sections describe how to locate, connect to, and browse the
data on a server.

13 Using OPC HDA Client Objects

13-2

Locate an OPC HDA Server
To establish a connection between MATLAB and an OPC historical data access server, you obtain two
pieces of information that the toolbox needs to uniquely identify the OPC historical data access
server. You use this information when you create an OPC Historical Data Access (OPC HDA) client
object.

The first piece of information is the host name of the server computer. The host name (a descriptive
name like "HistorianServer" or an IP address such as 192.168.16.32) qualifies that computer on the
network and is used by the OPC protocols to determine the available OPC servers on that computer.
In any OPC application, you must know the name of the OPC server's host so that a connection with
that host can be established. Your network administrator can provide a list of host names that provide
OPC servers on your network. The following example uses localhost as the host name, because it
connects to the OPC server on the same machine as the client.

The second piece of information is the OPC server ID. Each OPC server on a particular host is
identified by a unique server ID (also called the Program ID or ProgID) allocated to that server on
installation. The server ID is a character vector, usually containing periods. Although your network
administrator can provide you with a list of server IDs for a particular host, you can query a host for
all available OPC servers using the opchdaserverinfo function.

This example queries the local host for a list of available servers:

hostInfo = opchdaserverinfo('localhost')

hostInfo =
 1x4 OPC HDA ServerInfo array:
 index Host ServerID HDASpecification Description
 ----- --------- --------------------------------- ---------------- --
 1 localhost Advosol.HDA.Test.3 HDA1 Advosol HDA Test Server V3.0
 2 localhost IntegrationObjects.OPCSimulator.1 HDA1 Integration Objects OPC DA DX HDA Simulator 2
 3 localhost IntegrationObjects.OPCSimulator.1 HDA1 Integration Objects' OPC DA/HDA Server Simulator
 4 localhost Matrikon.OPC.Simulation.1 HDA1 MatrikonOPC Server for Simulation and Testing

Examining the returned structure in more detail provides the server IDs of each OPC server:
allServers = {hostInfo.ServerID}

allServers =
Columns 1 through 3
 'Advosol.HDA.Test.3' 'IntegrationObjects.OPCSimulator.1' 'IntegrationObjects.OPCSimulator.1'
Column 4
 'Matrikon.OPC.Simulation.1'

 Locate an OPC HDA Server

13-3

Create an OPC HDA Client Object
After determining the host name and server ID of the OPC server you want to connect to, you can
create an OPC HDA client object. The client controls the connection status to the server, stores
properties of that server, and allows you to read data from the server.

Create an OPC HDA client using the opchda function, specifying the host name and server ID
arguments:
hdaClient = opchda('localhost', 'Matrikon.OPC.Simulation.1')

hdaClient =
OPC HDA Client localhost/Matrikon.OPC.Simulation.1:
 Host: localhost
 ServerID: Matrikon.OPC.Simulation.1
 Timeout: 10 seconds

 Status: disconnected

 Aggregates: -- (client is disconnected)
 ItemAttributes: -- (client is disconnected)

You can also construct client objects directly from an OPC HDA ServerInfo object:

hostInfo = opchdaserverinfo('localhost');
hdaClient = opchda(hostInfo(1));

13 Using OPC HDA Client Objects

13-4

Connect to the OPC HDA Server
OPC HDA client objects are not automatically connected to the server when they are created. You can
see this from the Status property of the client object.

Use the connect function to connect an OPC HDA client object to the server at the command line:

connect(hdaClient)

When connected, the client object properties update to show certain server properties:

hdaClient

hdaClient =
OPC HDA Client localhost/Matrikon.OPC.Simulation.1:
 Host: localhost
 ServerID: Matrikon.OPC.Simulation.1
 Timeout: 10 seconds

 Status: connected

 Aggregates: 6 Aggregate Types
 ItemAttributes: 10 Item Attributes

Browse the OPC Server Name Space
A connected client object allows you to interact with the OPC server to obtain information about the
name space of that server. The server name space provides access to all the data points provided by
the OPC server by naming each data point, and then arranging those server items into a name space
that provides a unique identifier for each item. See “Retrieve an OPC HDA Server Name Space” on
page 13-7.

 Connect to the OPC HDA Server

13-5

Set Client Properties
You can modify many properties specific to the created client. These include Timeout, UserData,
Host (before connection), and ServerID (before connection). Modify these properties as you would
any other field of a MATLAB structure.

Set the Timeout Property
As OPC transactions often occur across networks, you might encounter cases where calls to those
servers take some time to return. To change the function timeout of the OPC HDA client object,
assign a new value to its Timeout property:

hdaClient.Timeout = 12

hdaClient =
OPC HDA Client localhost/Matrikon.OPC.Simulation.1:
 Host: localhost
 ServerID: Matrikon.OPC.Simulation.1
 Timeout: 12 seconds

 Status: connected

 Aggregates: 6 Aggregate Types
 ItemAttributes: 10 Item Attributes
Methods

13 Using OPC HDA Client Objects

13-6

Retrieve an OPC HDA Server Name Space
You use the getNameSpace function to retrieve the name space from an OPC HDA server. You must
specify the client object that is connected to the server of interest. The name space is returned as a
structure array containing information about each node in the name space.

This example retrieves the name space of the Matrikon OPC Simulation Server installed on the local
host:

hdaClient = opchda('localhost','Matrikon.OPC.Simulation.1');
connect(hdaClient);
ns = getnamespace(hdaClient)

ns =
3x1 struct array with fields:
 Name
 FullyQualifiedID
 NodeType
 Nodes

This table describes the fields in the structure:

Field Description
Name The name of the node, as a character vector.
FullyQualifiedID The fully qualified item ID of the node, as a character vector, often

composed of the path to the node, concatenated with '.' characters. Use
the fully qualified item ID when creating an item object associated with
this node.

NodeType The type of node. Can be 'branch' (contains other nodes) or 'leaf'
(contains no other branches).

Nodes Child nodes. Structure array with the same fields as ns, representing the
nodes contained in this branch of the name space.

From the previous example, exploring the name space shows the following:

ns(1)

ans =
 Name: 'Simulation Items'
 FullyQualifiedID: 'Simulation Items'
 NodeType: 'branch'
 Nodes: [8x1 struct]

ns(3)

ans =
 Name: 'Clients'
 FullyQualifiedID: 'Clients'
 NodeType: 'leaf'
 Nodes: []

In this example, the first node is a branch node called 'Simulation Items'. Because it is a branch
node, it is probably not a valid server item. The third node is a leaf node (containing no other nodes)
with a fully qualified ID of 'Clients'. Because this node is a leaf node, it is most likely a server item

 Retrieve an OPC HDA Server Name Space

13-7

that can be read. To examine the nodes further down the tree, you need to reference the Nodes field
of a branch node. For example, the following code obtains the first node contained within the
'Simulation Items' node:

ns(1).Nodes(1)

ans =
 Name: 'Bucket Brigade'
 FullyQualifiedID: 'Bucket Brigade.'
 NodeType: 'branch'
 Nodes: [14x1 struct]

The result shows that the first node of 'Simulation Items' is a branch node named 'Bucket
Brigade', and contains 14 nodes.

ns(1).Nodes(1).Nodes(9)

ans =
 Name: 'Real8'
 FullyQualifiedID: 'Bucket Brigade.Real8'
 NodeType: 'leaf'
 Nodes: []

The ninth node in 'Bucket Brigade' is named 'Real8' and has a fully qualified ID of 'Bucket
Brigade.Real8'. You use the fully qualified ID to refer to that specific node in the server name
space when referencing items.

13 Using OPC HDA Client Objects

13-8

Read Item Attributes
Each item that you find on a server might have a given set of item attributes associated with it. These
attributes provide information about the item stored on the server. The OPC Foundation defines a set
of common item attributes, while specific servers can define server-specific attributes. However,
support for item attributes is optional for any server.

You can find the attributes supported by your server by interrogating the ItemAttributes property
of a connected HDA client object:

hdaClient.ItemAttributes

OPC HDA Item Attributes:
 Name ID Description
 -------------- ---------- ----------------
 DATA_TYPE 1 Data type
 DESCRIPTION 2 Item Description
 NORMAL_MAXIMUM 11 High EU
 NORMAL_MINIMUM 12 Low EU
 ITEMID 13 Item ID
 TRIANGLE 4294967291 Triangle Wave
 SQUARE 4294967292 Square Wave
 SAWTOOTH 4294967293 Saw-toothed Wave
 RANDOM 4294967294 Random
 BUCKET 4294967295 Bucket Brigade

You use the readItemAttributes function to retrieve the item attributes for a particular item.

For a list of OPC defined item attributes for the OPC HDA specification, see “OPC HDA Item
Attributes” on page C-2.

 Read Item Attributes

13-9

Reading OPC Historical Data

• “Overview to Reading Historical Data” on page 14-2
• “Read Historical Data Over a Time Range” on page 14-3
• “Read Historical Data at Specific Times” on page 14-4
• “Read Processed Aggregate Data” on page 14-5
• “Retrieve Large Historical Data Sets” on page 14-6
• “Reading Modified Data” on page 14-7
• “Native MATLAB Data Types from Read Operations” on page 14-8
• “Disconnect from HDA Servers” on page 14-9
• “Clean Up OPC HDA Objects” on page 14-10

14

Overview to Reading Historical Data
After creating an OPC HDA client object (“Create an OPC HDA Client Object” on page 13-4) and
connecting to the relevant server (“Connect to the OPC HDA Server” on page 13-5), you can access
an array of functions which allow for the retrieval of historic data in various forms. The function you
use depends on the type and range of data required as well as whether any aggregation or processing
is required on that data.

The following table depicts the functions you can call to read certain types of data.

Function Task or Condition
readRaw Read data from the server as it was recorded, and process

that data using MATLAB.
readAtTime Read regularly sampled data or data from specific time

stamps, and trust the interpolation algorithms used by the
server.

readProcessed The server processes data over a long time range, returning
aggregates for particular intervals within that time range.

readModified The server is capable of modifying data stored on the server,
and you want to know what the values were before they
were modified.

14 Reading OPC Historical Data

14-2

Read Historical Data Over a Time Range
The readRaw function allows you to request the value, quality, and timestamp data for a list of items
over a specified time domain. Define the time domain by indicating start and end times for the
sampling. This function returns all data stored on the historian within the given time range.

By default, historians return the first data point found from the start time specified, up to the data
point found just before the end time. By setting the optional 'bounds' parameter to true, you can
indicate that bounding values be included. The server then returns data at the start and end times. If
no data exists at those exact times, the server returns the data value that is closest to that time but
outside the time range specified.

This function is useful if you want to retrieve raw values from the server, and processes that data
using MATLAB rather than relying on the server to perform the processing for you.

For example, if you are interested in the values between 17 November 2010 and 18 November 2010
in the 'Int2' items under the 'Random' branch of an OPC HDA server, and you were interested in
retrieving the bounding values, use this code:

DataObject = ReadRaw(HdaClient, 'Random.Int2', ...
 datenum(2010,11,17), datenum(2010,11,18), TRUE)

To read values at specified time stamps use the readAtTime function. If you are reading large
amounts of data and will be aggregating that data, consider using readProcessed (if your server
supports that function).

 Read Historical Data Over a Time Range

14-3

Read Historical Data at Specific Times
The readAtTime function reads the values for a list of item IDs at specific times. This is useful if
your analysis routine requires regularly sampled data and you can accept the interpolation scheme
used by your server. If no value exists on the server at the exact timestamp requested, the value is
interpolated from the surrounding data values.

For example, if you wanted the values of two items at this current moment and their values at the
same time yesterday, you could use the following code:

itemList = {'Random.Int1', 'Random.Boolean'}
timeStamps = [now; now-1];
dataObject = readAtTime(hdaClient, itemList, timeStamps)

Additionally, you can request that the data be returned as a supported MATLAB data type. See
“Native MATLAB Data Types from Read Operations” on page 14-8.

The same example could be called, but with a MATLAB data type specified as a fourth parameter. This
function call returns all the data values as 8-bit signed integers:

dataObject = readAtTime(HdaClient, ItemList, TimeStamps, 'int8')

You can now use this object as required, or display it as described in “Display Data Objects” on page
15-3.

14 Reading OPC Historical Data

14-4

Read Processed Aggregate Data
Historians can include the ability to process raw data in a variety of ways before returning it to you.
Examples of such processing include the interpolation of data points, time averaging, and standard
deviation calculations. Processing of data can be very useful when there is a large amount of data on
the server. Instructing the server to return only a processed data set can greatly reduce the time and
volume of data transferred.

You can discover which aggregates are supported by the server by requesting the Aggregates
property of a connected HDA client object:
aggTypes = clientObject.Aggregates
aggTypes =
OPC HDA Aggregate Types:
 Name ID Description
 ----------------- -- ---
 INTERPOLATIVE 1 Retrieve interpolated values.
 TIMEAVERAGE 4 Retrieve the time weighted average data over the resample interval.
 MINIMUMACTUALTIME 7 Retrieve the minimum value in the resample interval and the timestamp of the minimum value.
 MINIMUM 8 Retrieve the minimum value in the resample interval.
 MAXIMUMACTUALTIME 9 Retrieve the maximum value in the resample interval and the timestamp of the maximum value.
 MAXIMUM 10 Retrieve the maximum value in the resample interval.

In the previous example, the server supports six types of aggregate.

You can request processed data using the readProcessed function and passing in the ID of the
aggregate required. You can retrieve the property ID using the object and the appropriate aggregate
type.
clientObject.Aggregates.TIMEAVERAGE

 4

hdareadProcessed = readProcessed(clientObject, ItemList, clientObject.Aggregates.TIMEAVERAGE, ...
 AggregateInterval, StartTime, EndTime)
hdareadProcessed =
1-by-5 OPC HDA Data object:
 ItemID Value Start TimeStamp End TimeStamp Quality
 ------------ -------------- ----------------------- ----------------------- -----------------------------
 Random.Int1 1 int8 value 2010-11-28 13:56:40.666 2010-11-29 13:56:40.666 1 unique quality [Calculated]
 Random.Boolean 1 logical value 2010-11-28 13:56:40.666 2010-11-29 13:56:40.666 1 unique quality [Calculated]

The requested time domain is split into the time intervals you provide as the fourth function
argument. The aggregates are calculated over these intervals.

Additionally, you can request that the data be returned as a supported MATLAB data type. See
“Native MATLAB Data Types from Read Operations” on page 14-8.

 Read Processed Aggregate Data

14-5

Retrieve Large Historical Data Sets
This example shows how to retrieve very large data sets from OPC historical data access servers.

Your OPC HDA server may have a defined upper limit on how much data to return in any given
historical data access read operation. That upper limit is returned by the MaxReturnValues field of
the structure returned by calling getServerStatus on the client object. A value of 0 means there is
no defined limit, and the server returns all possible values.

When you request data over a wide time range, the server returns up to MaxReturnValues elements
for each item, and the read function issues a warning. The warning ID is
opc:hda:mex:ReadMoreData. To retrieve all values, use code similar to that shown here.

This example retrieves all values of two items over a full year.
lastwarn('');
startTime = datenum(2013,1,1); % Replace with your start time
endTIme = datenum(2013,12,31); % Replace with your end time
itmList = {'Plant1.Unit2.FIC1001', 'Plant2.Unit1.FIC1001'}; % Replace with your item list
wState = warning('off','opc:hda:mex:ReadMoreData');
yearData = hdaObj.readRaw(itmList,startTime,endTime);
[warnMsg, warnID] = lastwarn;
gotAllData = isempty(strfind(warnID,':ReadMoreData')) && isempty(strfind(warnID,':ReadComposite'));
while ~gotAllData
 % Update start time to last time retrieved
 endDates = cellfun(@(x)x(end), {yearData.TimeStamp});
 startTime = max(endDates);
 % Read data and append to existing data set
 moreData = hdaObj.readRaw(itmList,startTime,endTime);
 yearData = append(yearData,moreData);
 [warnMsg, warnID] = lastwarn;
 gotAllData = isempty(strfind(warnID,':ReadMoreData'));
end
% Reset warning state
warning(wState);

14 Reading OPC Historical Data

14-6

Reading Modified Data
It is possible that at some point historical data might be modified on the server, and you are
interested in these changes. In this case you would use readModified function. This function
returns the timestamps at which the data was modified and the value before that modification. If
readRaw, readAtTime, or readProcessed returns a quality value of OPCHDA_EXTRADATA, it
indicates that the item in question has been modified and more information can be retrieved using
readModified. By providing the function with a list of items that you are interested in and the time
range over which you would like to query for changes, you can retrieve any changed data items. This
function operates similarly to readRaw, but only modified data is returned.

 Reading Modified Data

14-7

Native MATLAB Data Types from Read Operations
The default format of returned data is an M-by-1 OPC HDA data object containing data values whose
type is defined by the OPC variant type the server stored it as. In some cases, such as readAtTime
and readProcessed, you can specify that the read operations return data in native MATLAB data
types, including structures and cell arrays.

For example, you can request the same set of data in the following ways.

Request Structure Output
In this case, the read operation returns a single output containing four fields:

struct = HDAObject.readAtTime('Random.Int1', TimeStamps, 'struct')
struct =
 ItemID: 'Random.Int1'
 Timestamp: [8x1 double]
 Quality: [8x1 double]
 Value: [8x1 int8]

Request MATLAB Numeric Data Output
When you request MATLAB numeric types as output, the read operation returns four outputs: Item
ID, Value, Quality, and TimeStamp. The Value output is converted into the MATLAB data type
requested. The following example returns all Value data as unsigned 32-bit integers:
[itmId, val, Q, ts] = HDAObject.readAtTime('Random.Int1', TimeStamps, 'uint32');

Request Cell Array Output
When requesting cell array output, the read operation returns four outputs: Item ID, Value, Quality,
and TimeStamp. The Value output is a cell array, preserving the original data type of the item on the
server.
[cItemId, cVal, cQ, cTimes] = HDAObject.readAtTime('Random.Int1', TimeStamps, 'cell')

14 Reading OPC Historical Data

14-8

Disconnect from HDA Servers
Disconnecting a client releases the client object from the server and frees system resources. Do this
by calling the disconnect command on the client object:

disconnect(hdaObject)

 Disconnect from HDA Servers

14-9

Clean Up OPC HDA Objects
Disconnecting a client does not delete the client object from the MATLAB workspace, nor does it
remove any data objects created during reads executed via the client object. You can remove these
objects from the workspace using the MATLAB clear command:

clear hdaObj
clear dataObj

14 Reading OPC Historical Data

14-10

Working with OPC HDA Data Objects

• “Introduction to OPC HDA Data Objects” on page 15-2
• “Display Data Objects” on page 15-3
• “OPC HDA Quality Values” on page 15-4
• “Manipulate Data Using OPC HDA Objects” on page 15-5

15

Introduction to OPC HDA Data Objects
All data returned from OPC HDA servers can be stored in MATLAB as an OPC HDA data object. The
HDA data object allows for convenient data storage, manipulation, and visualization. The data
elements themselves are represented by one or more value, quality, and timestamp values, all
associated with an item ID.

When you perform read operations on OPC HDA servers, you request data for one or more item IDs
on that server over a specified time range. For each item requested, the OPC server returns zero or
more data object elements stored as triplets of Value (the sensor reading or item value), Quality (the
quality of the value stored), and TimeStamp (the time the data was logged by the server). The Value,
Quality, and TimeStamp properties are always M-by-1 vectors. The data type of the Value property
depends on what the server returns to MATLAB. See “Conversion Between MATLAB Data Types and
COM Variant Data Types” on page 8-13.

Each read operation thus returns an array of OPC HDA data objects, one for each item requested.
Elements of a data object array are not guaranteed to have the same number of Value, Quality, and
TimeStamp triples, because the server might not have logged data at the same time for all items
requested.

15 Working with OPC HDA Data Objects

15-2

Display Data Objects
OPC HDA data read operations can produce a large amount of data returned to MATLAB. To
accommodate this, Industrial Communication Toolbox provides two functions to display data objects.
By default, a summary of the data is presented. To display data in this form, type the object name at
the MATLAB command line, similar to this:
myDataObject

1-by-1 OPC HDA Data object:
 ItemID Value Start TimeStamp End TimeStamp Quality
 ------------ --------------- ----------------------- ----------------------- -----------------------------
 Scalar.Item1 8 double values 2010-10-13 14:18:11.832 2010-11-11 14:18:11.832 1 unique quality [Extra Data]

The showValues function displays the internal values of the data object in a table. This form is
preferable if you want all the data values to be visible, for example when generating reports or
visually scanning the data.

myDataObject.showValues

OPC HDA Data object for item Scalar.Item1:
 TIMESTAMP VALUE QUALITY
 ======================= ============= ================
 2010-10-13 14:18:11.832 3.000000 Extra Data (Bad)
 2010-10-18 14:18:11.832 37.000000 Extra Data (Bad)
 2010-10-22 14:18:11.832 17.000000 Extra Data (Bad)
 2010-10-23 14:18:11.832 21.000000 Extra Data (Bad)
 2010-11-01 14:18:11.832 25.000000 Extra Data (Bad)
 2010-11-09 14:18:11.832 38.000000 Extra Data (Bad)
 2010-11-10 14:18:11.832 31.000000 Extra Data (Bad)
 2010-11-11 14:18:11.832 39.000000 Extra Data (Bad)

 Display Data Objects

15-3

OPC HDA Quality Values
OPC HDA quality values identify the quality or integrity of retrieved historical data. The quality is
returned as a 32-bit number with only the upper 16 bits relating specifically to HDA; the lower 16 bits
relate to both OPC data access. For information on data access quality, see “OPC Quality” on page A-
2.

Upper 16-bit HDA Quality Values

Quality Values Description Mask Value Associated DA
Quality

OPCHDA_EXTRADATA More than one piece of data that
might be hidden exists at same
timestamp.

0x00010000 Good, Bad, Quest

OPCHDA_INTERPOLATED Interpolated data value. 0x00020000 Good, Bad, Quest
OPCHDA_RAW Raw data value. 0x00040000 Good, Bad, Quest
OPCHDA_CALCULATED Calculated data value, as would

be returned from a
ReadProcessed call.

0x00080000 Good, Bad, Quest

OPCHDA_NOBOUND No data found to provide upper
or lower bound value.

0x00100000 Bad

OPCHDA_NODATA No data collected. Archiving not
active (for item or all items).

0x00200000 Bad

OPCHDA_DATALOST Collection started / stopped / lost. 0x00400000 Bad
OPCHDA_CONVERSION Scaling / conversion error. 0x00800000 Bad, Quest
OPCHDA_PARTIAL Aggregate value is for an

incomplete interval.
0x01000000 Good, Bad, Quest

15 Working with OPC HDA Data Objects

15-4

Manipulate Data Using OPC HDA Objects
OPC HDA data objects provide initial data storage, visualization, and manipulation functions for you
to work with OPC historical data in MATLAB. To facilitate preparation for further processing, OPC
HDA data objects allow you to resample OPC historical data as follows:

• To prepare data for analysis algorithms that require data to be regularly sampled, use the
resample function.

• To ensure that data from all items contains the same timestamp vector, use the tsunion function,
which keeps all data and interpolates data for missing timestamps in each item, or the
tsintersect function, which discards any data from a timestamp that does not exist in all items
in the object.

Resample Data Objects to Include All Available Time Stamps Using
tsunion
Given an array of data objects, tsunion adapts all data to have a single common set of timestamps
by finding all unique time stamps in all items of the array. The values of each data item are then
extrapolated or interpolated at the new timestamps. Resampling is performed using the method
specified in the function call. Valid methods are 'linear', 'spline', 'pchip', 'nearest', and
'hold'. The default is 'linear'. If any returned Value is a character vector, only 'hold' is
supported. Elements with the same item ID are combined, so that tsunion creates data objects with
unique item IDs. The Quality of interpolated timestamps is set to 'Interpolated:Good', and for
extrapolated timestamps is set to 'Interpolated:Uncertain'.

The top two plots above depict two separate data objects. The bottom plot is the result of these two
data objects being passed to the tsunion function. You can see that in the bottom plot that each
element has been extended to include the timestamps of the other and that values have been
extrapolated to satisfy these new timestamps.

 Manipulate Data Using OPC HDA Objects

15-5

Resample Data Objects to Include All Common Time Stamps Using
tsintersect
When you are interested in only the timestamps common to a number of data objects, you can use the
tsintersect function. It generates a new OPC HDA data object in which each element has the same
timestamp vector composed of those timestamps that were common to all items in the original data
objects provided. If the provided data objects contain elements with the same item ID, those elements
are combined into one before computing the intersection.

The previous figure shows how the values of two data objects, plotted in the first and second positions
respectively, can be intersected to produce a new object whose elements contain only timestamps
common to the original two. Uncommon timestamps are discarded along with their data values.

Resample Data to a New Set of Time Stamps
You might want to resample all items in a data object at specified time stamps; for example, when you
have data values for a second item and want to correlate your data object with the original at the
same timestamps. Where no exact values are available, the resample function resamples
(interpolate or extrapolate) the data values at the requested time stamps using the resampling
method you specify. Valid methods include 'linear', 'spline', 'pchip', and 'nearest' (see
interp1 for details on these methods), as well as 'hold', which implements a zero-order-hold
behavior (previous values are held until a new value exists).

For character vector values, only the 'hold' method is supported. Trying to resample data
containing character vectors with any method other than 'hold' generates an error.

This concept is illustrated in the following graphic.

15 Working with OPC HDA Data Objects

15-6

In this figure, the blue line represents the original data values while the red line represents the
resampled data at a new set of timestamps. These new timestamps are marked by red stars while the
original timestamps are marked by blue circles.

Convert OPC HDA Data Objects to MATLAB Numeric Data Types
When retrieving data from the server and storing it in an OPC data object, the client automatically
converts the values from the OPC variant types (see Comparison of MATLAB and COM Variant Data
Types). Retrieve the data values from the data object by referencing the Value property. For
example, to display and access the first element of the hdaReadRaw data object:

hdaReadRaw

hdaReadRaw =
1-by-5 OPC HDA Data object:
 ItemID Value Start TimeStamp End TimeStamp Quality
 -------------- ----------------- ----------------------- ----------------------- ----------------------
 Random.Int1 5 int8 values 2010-12-01 16:05:30.902 2010-12-01 16:05:32.869 1 unique quality [Raw]
 Random.Uint2 5 double values 2010-12-01 16:05:30.902 2010-12-01 16:05:32.869 1 unique quality [Raw]
 Random.Real8 5 double values 2010-12-01 16:05:30.902 2010-12-01 16:05:32.869 1 unique quality [Raw]
 Random.String 5 cell values 2010-12-01 16:05:30.902 2010-12-01 16:05:32.869 1 unique quality [Raw]
 Random.Boolean 5 logical values 2010-12-01 16:05:30.902 2010-12-01 16:05:32.869 1 unique quality [Raw]

class(hdaReadRaw(1).Value)

int8

An alternative is to call standard type conversion methods available in MATLAB on the entire object,
in which case all items are converted to the chosen type (assuming they have the same timestamp
vectors):

newArray = double(hdaReadRaw(1));
class(newArray)

double

 Manipulate Data Using OPC HDA Objects

15-7

In this example, hdaReadRaw(1) has an initial native data type of 'int8', yet after passing it to the
'double' conversion call, the resulting values are of the native MATLAB type 'double'.

15 Working with OPC HDA Data Objects

15-8

OPC HDA and UA Classes

16

opc.hda.AggregateTypes class
Package: opc.hda

OPC HDA server aggregate types

Construction
You do not create AggregateTypes objects directly; instead, when you connect an OPC HDA client
to the server, the Aggregates property is automatically populated with available aggregate types for
that server.

Methods
getDescription Get description of OPC HDA aggregate type or item attribute
getIDFromName Translate OPC HDA aggregate type or item attribute name to numeric identifier
getIDList Get all aggregate type or item attribute IDs
getNameList Get all aggregate type or item attribute names

Properties
AggregateTypes objects have no generic user-visible properties. Instead, each available aggregate
type is created as a property. For example, if the server supports the TIMEAVERAGE aggregate type,
the AggregateTypes object stored in the Aggregates property of a client connected to that server
has a property named TIMEAVERAGE with its value set to the numeric ID of that attribute.

Copy Semantics
Value — To learn how this affects your use of the class, see Comparing Handle and Value Classes in
the MATLAB Object-Oriented Programming documentation.

See Also
opc.hda.Client | readProcessed

16 OPC HDA and UA Classes

16-2

opc.hda.Data class
Package: opc.hda

OPC HDA data object

Description
The opc.hda.Data object stores and presents information retrieved from an OPC historical data
access server. The OPC HDA data object allows you to store and process data retrieved from an OPC
HDA server, and convert that data into MATLAB data types that can be operated on further.

Construction
You construct OPC HDA data objects using the various methods to read an OPC HDA client object.

Methods

Properties

Copy Semantics
Value — To learn how this affects your use of the class, see Comparing Handle and Value Classes in
the MATLAB Object-Oriented Programming documentation.

See Also
readRaw | readAtTime | readProcessed | readModified

 opc.hda.Data class

16-3

opc.hda.ItemAttributes class
Package: opc.hda

OPC HDA item attributes

Description
OPC servers store and publish item attributes for each item in the server's name space. Such
attributes assist in describing items, including their scaling, limits, and data types. A server is not
obliged to store attributes, although common attributes are defined in the OPC HDA specification.

The ItemAttributes class is used to store item attributes available on a server. You do not create
ItemAttributes objects directly; instead, when you connect an OPC HDA client to the server, the
ItemAttributes property is automatically populated with available item attributes for that server.

You can access the required aggregate type using dot-notation on the ItemAttributes property of a
connected OPC HDA client. For example, for client hdaObj, you can access the MAXIMUM attribute by
typing hdaObj.ItemAttributes.MAXIMUM. Tab completion works for item attributes. Specific
attributes are distinguished from class methods by all-capitals: getDescription is not an available
aggregate type, but is a method of the ItemAttributes class.

Construction
You do not create ItemAttributes objects directly; instead, when you connect an OPC HDA client
to the server, the ItemAttributes property is automatically populated with available item
attributes for that server.

Methods

getDescription Get description of OPC HDA aggregate type or item attribute
getIDFromName Translate OPC HDA aggregate type or item attribute name to numeric identifier
getIDList Get all aggregate type or item attribute IDs
getNameList Get all aggregate type or item attribute names

Properties
ItemAttributes objects have no generic user-visible properties. Instead, each available item
attribute is created as a property. For example, if the server supports the DESCRIPTION item
attribute, the ItemAttributes object stored in the ServerItemAttributes property of a client
connected to that server has a property named DESCRIPTION with the value set to the numeric ID of
that attribute.

Copy Semantics
Value — To learn how this affects your use of the class, see Comparing Handle and Value Classes in
the MATLAB Object-Oriented Programming documentation.

16 OPC HDA and UA Classes

16-4

See Also
opc.hda.Client | readItemAttributes

 opc.hda.ItemAttributes class

16-5

opc.hda.ServerInfo class
Package: opc.hda

OPC HDA server information objects

Description
The ServerInfo class stores information about installed OPC HDA servers on a specified host. You
can use ServerInfo objects to quickly construct OPC HDA clients associated with a particular OPC
HDA server.

Construction
You should not directly create this class. Instead, use opchdaserverinfo to retrieve information
about servers from a particular host.

Methods
findDescription Locate OPC HDA servers with particular description

Properties

Copy Semantics
Value — To learn how this affects your use of the class, see Comparing Handle and Value Classes in
the MATLAB Object-Oriented Programming documentation.

See Also
opchdaserverinfo

16 OPC HDA and UA Classes

16-6

Unified Architecture User’s Guide

7

OPC Unified Architecture (UA)

• “About OPC Unified Architecture” on page 17-2
• “OPC UA Components” on page 17-3
• “OPC UA Server Data Types” on page 17-5
• “OPC UA Security” on page 17-7
• “OPC UA Certificate Management” on page 17-9
• “OPC UA Aggregate Functions” on page 17-10
• “Access Data from OPC UA Servers” on page 17-13

17

About OPC Unified Architecture
The OPC Unified Architecture (OPC UA) standard combines all the capabilities of OPC Data Access
and OPC Historical Data Access standards (together, referred to as "OPC Classic") and adds various
additional capabilities into a single, extensible standard. OPC UA servers provide a single namespace
which organizes the data available on the server into a hierarchical view of nodes (also called items in
OPC Classic terminology). Nodes on OPC UA servers can be object nodes, which organize other
nodes, or variable nodes, which have a value representing some process value on the server. Variable
nodes can contain other variable nodes. Nodes are arranged in a number of representations; for
Industrial Communication Toolbox, the nodes are exposed as a hierarchical tree, with nodes
containing subnodes called children.

OPC UA servers are required to publish a node in their namespace named "Server". The Server node
provides information about the OPC UA server, including the capabilities of the server, specific
limitations of the server, and other information related to the server. Industrial Communication
Toolbox provides selected information from the Server node as properties of the client you create to
connect to that server. For information on client properties, see opc.ua.Client.

OPC UA servers may or may not historize Variable nodes. For historizing nodes, OPC UA servers store
prior values of the node, and can provide that history to OPC UA Clients as raw data (data points at
the times that the server stored the Value), or as data at requested times (the server interpolates the
raw data using either sample-and-hold or linear interpolation), or as processed data, using a
predefined aggregate function that is requested by the user. Each OPC UA server describes which
Aggregate Functions are supported by that server. "OPC UA Aggregate Functions" describes the
standard aggregate functions defined in the OPC UA specification. Servers may implement custom
aggregate functions; consult the specific OPC UA server reference for information on how those
functions work. Industrial Communication Toolbox provides a client interface to the OPC UA servers
which allows you to browse the server namespace to find nodes of interest. The toolbox supports the
opc.tcp binary protocol and anonymous, unsecured connections. You can also use the client to define
the security configuration for the connection, and provide user credentials to the server. The toolbox
supports the opc.tcp binary protocol only; HTTP and HTTPS connections are not supported. For some
of the tasks you can perform with Industrial Communication Toolbox, see the related examples.

See Also

Related Examples
• “Read and Write Current OPC UA Server Data” on page 21-51
• “Read Historical OPC UA Server Data” on page 21-56
• “Visualize and Preprocess OPC UA Data” on page 21-61

17 OPC Unified Architecture (UA)

17-2

OPC UA Components

In this section...
“Overview” on page 17-3
“OPC UA Client” on page 17-3
“OPC UA Node” on page 17-3
“OPC UA Data” on page 17-4
“OPC UA Quality” on page 17-4
“Working with Time in OPC UA” on page 17-4

Overview
Industrial Communication Toolbox provides an OPC UA client to connect to OPC UA servers. Using
the client, you connect to the server, query server status, browse the server namespace, read and
write current values, and read historical values from nodes on the server. Historical data is retrieved
as OPC data objects, which allow you to process historical data in preparation for common analysis
tasks.

OPC UA Client
You construct the OPC UA client using the opcua function. You set the security configuration for the
connection using setSecurityModel. You connect the client to the server using connect,
optionally passing user authentication credentials. The client includes a number of properties
describing the server capabilities, including supported security models and user authentication
options. See opc.ua.Client for more information on the properties available to the client. You can
also query the server for extended status information using getServerStatus.

You use the client to perform any communication with the server, including browsing the server name
space, reading and writing current values, and reading historical values from the server.

OPC UA Node
The OPC UA client includes a Namespace property, which contains the top level of the server’s
namespace as an array of Nodes. An OPC UA Node variable describes the node on the server, and
contain other subnodes in the Children property. Nodes have a NodeType which can be 'Object'
or 'Variable'. Object nodes have no value associated with them, and are used purely for organizing
the namespace of the server. Variable nodes store current values, representing a sensor or actuator
value associated with the server. For more information, see opc.ua.Node

Servers can choose to historize nodes (store previous data values for that node). The Historizing
property of a Node defines whether a server is historizing the node or not. If you try to retrieve
historical data from a Variable node with Historizing set to false, no data is returned and an
error is displayed.

You can read and write current values, and retrieve historical data, using Node variables directly.
This is simply a short-hand for performing the same operations on the node Client property.

 OPC UA Components

17-3

OPC UA Data
Data retrieved from OPC UA servers includes three important values. The Value is accompanied by a
Quality and a Timestamp. The Quality represents how accurately the data Value is considered to
reflect the actual source value attached to the server. The Timestamp represents the time that the
server recorded the value, or received notification from the data source that the value is current.

When you retrieve current values, the Value, Quality, and Timestamp are retrieved into separate
arrays. When you retrieve historical values, OPC UA servers might return a different number of
Value, Quality, and Timestamp arrays for each Node requested. This data is packaged into an OPC UA
Data object, which allows you to process this data set in preparation for common analysis tasks. For
more information, type

help opc.ua.Data

For an example of working with OPC UA data, see “Visualize and Preprocess OPC UA Data” on page
21-61.

OPC UA Quality
OPC UA Quality values are 32-bit integer values. OPC UA Qualities encode many different
characteristics of the quality of the data returned from a current or historical data read operation,
including the Major quality (Good, Uncertain, or Bad), quality substatus (dependent on Major
quality), value limits (High Limit, Low Limit, Constant), and history origin and characteristics (Raw,
Interpolated, Calculated). You can query these characteristics individually using functions specific to
the Quality variable that is returned in the read operation. For more information, type

help opc.ua.QualityID

Working with Time in OPC UA
OPC UA servers return timestamps for server status and for all current and historical read
operations. The timestamp represents the time at which the server recorded the data value returned
in the read operation. Timestamps are represented in MATLAB by datetime values. The datetime
values are always returned in the time zone of the MATLAB client used to retrieve the data from the
OPC UA server. OPC UA historical read functions require time ranges or specific timestamp arrays
over which to retrieve historical data. You can specify time ranges using MATLAB datetime values,
or as MATLAB date numbers. Any numeric value passed as a timestamp is interpreted as a MATLAB
date number. For functions requiring a start and end timestamp, you can also pass a start timestamp
and a duration.

17 OPC Unified Architecture (UA)

17-4

OPC UA Server Data Types
OPC UA servers store data retrieved from sensors, actuators and other data sources, in Variable
Nodes. The Value of each Variable Node is stored and retrieved as a specific Server Data Type, and
may be a single value, or an array of values of that data type. The ServerDataType property of an
opc.ua.Node object describes the OPC UA data type used by the server to store the node Value.

When you read data from the server, the value is translated into a corresponding MATLAB data type.

The OPC UA Standard defines simple data types, and Structures which consist of fields containing
other data types. Vendors and standards organizations may define extended Data Types, but these are
all collections of standard data types, and these collections can be retrieved as multiple Nodes
containing Standard Data Types.

The following table describes the OPC UA Standard Data Types, and how these are represented in
MATLAB. Any ServerDataType value not shown here cannot be read by Industrial Communication
Toolbox.

OPC UA Data Type MATLAB Data Type Notes
Boolean Logical
Byte uint8
ByteString (*) uint8 vector Arrays converted to cell array of

uint8
DateTime (*) Datetime
Double Double
ExpandedNodeId (*) Structure Fields: NodeId, NaspaceUri,

ServerIndex
Float Single
Guid (*) Encoded character vector Arrays converted to cell array of

character vectors
Int16 int16
Int32 int32
Int64 int64
LocalizedText Character vector Arrays converted to cell array of

character vectors
NodeId (*) Encoded character vector Arrays converted to cell array of

character vectors
QualifiedName (*) Encoded character vector Arrays converted to cell array of

character vectors
SByte int8
String Character vector Arrays converted to cell array of

character vectors
Structure (*) Structure
Time (*) Datetime Arrays not supported.
UInt16 uint16

 OPC UA Server Data Types

17-5

OPC UA Data Type MATLAB Data Type Notes
UInt32 uint32
UInt64 uint64
XmlElement (*) Character vector Arrays converted to cell array of

character vectors

When writing values to an OPC UA server, the value is translated to the equivalent OPC UA Data Type
as long as the value is specified as the MATLAB data type described above. You cannot write OPC UA
Data Types marked (*).

17 OPC Unified Architecture (UA)

17-6

OPC UA Security
OPC Unified Architecture has been designed to support secure, authenticated connections between
OPC UA servers and clients. Nonproprietary, industry standard protocols are used to achieve security
in OPC UA communication. Security in OPC UA is provided using three mechanisms:

• Messages passed between an OPC UA client and server can be sent in one of three Message
Security Modes:

• None: No security. Messages are sent in clear text.
• Sign: Messages are signed by the sender, to authenticate the origin of the message. However,

messages are not encrypted.
• SignAndEncrypt: Messages are signed by the sender, to authenticate the origin of the

message, and encrypted to ensure privacy.
• Encryption and signing of the messages is performed using industry standard Asymmetric

Cryptography schemes. A Channel Security Policy defines the specific scheme to use for
encryption and signing. For a list of currently supported Channel Security Policies in Industrial
Communication Toolbox, type the following command in MATLAB:

enumeration opc.ua.ChannelSecurityPolicies

When setting up a secure connection between the OPC UA Client and OPC UA Server, each of the
parties exchange Application Instance Certificates that are used to encrypt and sign messages
sent between the parties. These certificates can optionally be checked against a certificate trust
list maintained by system administrators for each application to ensure that connections are made
to the correct server, from the correct client. Industrial Communication Toolbox currently accepts
server certificates automatically when the connection is established. For more information, see
“OPC UA Certificate Management” on page 17-9.

• User Authentication may be used by the server to restrict access to features of the server based
on the specific user making the connection. Industrial Communication Toolbox supports the
following user authentication options:

• Anonymous: A user name is not provided. Some servers might not allow for anonymous user
authentication.

• Username: A user name and password combination authenticates the specific user making the
connection.

• Certificate: A User Certificate (in X509 standard) is used to authenticate the user. The
public key of the certificate must be pre-shared with the server, and when establishing the
connection the user must provide the public key, private key, and a password used to protect
the private key. Clear (passwordless) private keys are not supported by the toolbox.

Servers normally support more than one security model for clients to use when connecting to the
server. The supported security models that a server supports are described through endpoints
available from the server. Each endpoint defines one Channel Security Policy, the allowable Message
Security Modes, and supported User Authentication types. To use that specific endpoint, the client
makes a connection to the endpoint URL provided in the endpoints list and defines the Message
Security Mode to use.

You query the available endpoints of a server using opcuaserverinfo, or by constructing an OPC
UA client with opcua. Once you construct an OPC UA client, you can set the security model to use for
that connection using setSecurityModel. You pass the user credentials when you connect to the
server using the connect function.

 OPC UA Security

17-7

See Also

More About
• “OPC UA Components” on page 17-3
• “OPC UA Certificate Management” on page 17-9

17 OPC Unified Architecture (UA)

17-8

OPC UA Certificate Management
For securing communications between the client and the server, OPC UA relies on certificates
exchanged during the connection process. Certificates consist of a private key, held by the owner; a
public key, shared with communication partners; and a password to unlock the private key. If a
certificate is compromised in any way (for example, by exposing the private key to unknown parties)
then the certificate can be placed in a Revocation List so that servers know not to trust clients using
that certificate.

To ensure that only authorized clients can connect to an OPC UA server, the server administrator
might require that any client attempting to connect to the OPC UA server pre-share their Client
Application Instance Certificate before a connection can be established. In this case you must export
the client public key and the administrator can store that public key in a trust list for the server.

Industrial Communication Toolbox automatically generates a Client Application Instance when you
first call opcuaserverinfo or construct an OPC UA client with opcua. You use
exportClientCertificate to copy the client public key to a file for sharing with server
administrators.

Note for Administrators Currently it is not possible to replace the Client Application Instance
Certificate for Industrial Communication Toolbox.

See Also

More About
• “OPC UA Components” on page 17-3
• “OPC UA Security” on page 17-7

 OPC UA Certificate Management

17-9

OPC UA Aggregate Functions

Introduction
OPC UA servers can return historical data as an aggregate of some function performed on the data
history at particular periods. When you request processed data using the readProcessed function,
you specify an Aggregate to use, and an Aggregate Interval of time over which to perform that
Aggregate function. The server then performs the Aggregate function on each period of Aggregate
Interval defined, returning one value associated with all the data in that interval. For example, the
"Maximum" Aggregate Function returns the maximum value in the Aggregate Interval; the Range
Aggregate Function returns the difference between the highest and lowest value in the aggregate
interval.

OPC UA Aggregates are represented in MATLAB by a character vector defining the Aggregate
Function, or by the opc.ua.AggregateFnId enumeration class. For example, to specify that a
readProcessed operation use the Maximum Aggregate Function, you can use either of the following
syntaxes:

readProcessed(UaClient,NodeList,'Maximum',...)
readProcessed(UaClient,NodeList,opc.ua.AggregateFnId.Maximum,...)

Available Aggregate Functions on an OPC UA Server
When an OPC UA Client is connected to an OPC UA server, the client’s AggregateFunctions
property stores a list of aggregate functions supported by that server. Servers need not implement
every Aggregate Function defined by the OPC UA Standard, but must publish the Aggregate
Functions that are supported by that server. Use the AggregateFunctions property to ensure that
the aggregate function you need is supported by the server. Note, however, that the server might not
implement that function for all Variable nodes on the server. If you attempt to retrieve processed data
from the server, you might get an "Unsupported Aggregate Function" error, even if the aggregate
function is reported as being supported by the server.

OPC UA Standard Aggregate Functions
The following functions are defined by the OPC Foundation.

Function Description
AnnotationCount Retrieve the number of Annotations in the interval.
Average Retrieve the average value of the data over the interval.
Count Retrieve the number of raw values over the interval.
Delta Retrieve the difference between the Start and End values in the

interval.
DeltaBounds Retrieve the difference between the StartBound and EndBound

values in the interval.
DurationBad Retrieve the total duration of time in the interval during which the

data is bad.
DurationGood Retrieve the total duration of time in the interval during which the

data is good.

17 OPC Unified Architecture (UA)

17-10

Function Description
DurationInStateNonZero Retrieve the time a Boolean or numeric was in a nonzero state

using Simple Bounding Values.
DurationInStateZero Retrieve the time a Boolean or numeric was in a zero state using

Simple Bounding Values.
End Retrieve the value at the end of the interval using Interpolated

Bounding Values.
EndBound Retrieve the value at the end of the interval using Simple Bounding

Values.
Interpolative At the beginning of each interval, retrieve the calculated value

from the data points on either side of the requested timestamp.
Maximum Retrieve the maximum raw value in the interval with the

timestamp of the start of the interval.
Maximum2 Retrieve the maximum value in the interval including the Simple

Bounding Values.
MaximumActualTime Retrieve the maximum value in the interval and the timestamp of

the maximum value.
MaximumActualTime2 Retrieve the maximum value with the actual timestamp including

the Simple Bounding Values.
Minimum Retrieve the minimum raw value in the interval with the timestamp

of the start of the interval.
Minimum2 Retrieve the minimum value in the interval including the Simple

Bounding Values.
MinimumActualTime Retrieve the minimum value in the interval and the timestamp of

the minimum value.
MinimumActualTime2 Retrieve the minimum value with the actual timestamp including

the Simple Bounding Values.
NumberOfTransitions Retrieve the number of changes between zero and nonzero that a

Boolean or Numeric value experienced in the interval.
PercentBad Retrieve the percent of data (0 to 100) in the interval which has

bad StatusCode.
PercentGood Retrieve the percent of data (0 to 100) in the interval which has

good StatusCode.
Range Retrieve the difference between the Minimum and Maximum values

over the interval.
Range2 Retrieve the difference between the Minimum2 and Maximum2

values over the interval.
StandardDeviationPopulat
ion

Retrieve the standard deviation for the interval for a complete
population (n) which includes Simple Bounding Values.

StandardDeviationSample Retrieve the standard deviation for the interval for a sample of the
population (n-1).

Start Retrieve the value at the beginning of the interval using
Interpolated Bounding Values.

 OPC UA Aggregate Functions

17-11

Function Description
StartBound Retrieve the value at the beginning of the interval using Simple

Bounding Values.
TimeAverage Retrieve the time weighted average data over the interval using

Interpolated Bounding Values.
TimeAverage2 Retrieve the time weighted average data over the interval using

Simple Bounding Values.
Total Retrieve the total (time integral) of the data over the interval using

Interpolated Bounding Values.
Total2 Retrieve the total (time integral) of the data over the interval using

Simple Bounding Values.
VariancePopulation Retrieve the variance for the interval as calculated by the

StandardDeviationPopulation which includes Simple
Bounding Values.

VarianceSample Retrieve the variance for the interval as calculated by the
StandardDeviationSample.

WorstQuality Retrieve the worst StatusCode of data in the interval.
WorstQuality2 Retrieve the worst StatusCode of data in the interval including the

Simple Bounding Values.

17 OPC Unified Architecture (UA)

17-12

Access Data from OPC UA Servers

In this section...
“OPC UA Programming Overview” on page 17-13
“Step 1: Locate Your OPC UA Server” on page 17-13
“Step 2: Create an OPC UA Client and Connect to the Server” on page 17-14
“Step 3: Browse OPC UA Server Namespace” on page 17-15
“Step 4: Read Current Values from the OPC UA Server” on page 17-16
“Step 5: Read Historical Data from the OPC UA Server” on page 17-17
“Step 6: Plot the Data” on page 17-18
“Step 7: Clean Up” on page 17-18

OPC UA Programming Overview
This topic shows the basic steps to create an OPC Unified Architecture (UA) application by retrieving
current and historical data from a Simulation Server running on your local machine.

Note To run the sample code in the following steps you need the Prosys OPC UA Simulation Server
running on your local machine. You can also optionally install the Local Discovery Service and
register the Prosys server with the LDS. For installation details, see “Install an OPC UA Simulation
Server for OPC UA Examples” on page 1-15. The code requires only minor changes to work with
other servers.

Step 1: Locate Your OPC UA Server
In this step, you obtain information that the toolbox needs to uniquely identify the OPC UA server
that you want to connect to. You use this information when creating an OPC UA client object,
described in Step 2: Create an OPC UA Client Object.

The first piece of information is the host name of the server computer. The host name (a descriptive
name like "HistorianServer" or an IP address such as 192.168.16.32) qualifies that computer on the
network, and is used by the OPC protocols to determine the available OPC servers on that computer.
In any OPC application, you must know the name of the OPC server host, so that a connection with
that host can be established. Your network administrator can provide a list of host names that provide
OPC servers on your network. In this example, you will use 'localhost' as the host name, because
you will connect to the OPC server on the same machine as the client.

OPC UA servers are uniquely identified by Universal Resource Locations. Similar to web addresses, a
URL for an OPC UA server starts with opc.tcp://, and then provides an address of the server as a
hostname, port, and address in standard ASCII text. For example, the URL for the Prosys OPC UA
Simulation Server is opc.tcp://localhost:53530/OPCUA/SimulationServer.

OPC UA Server URLs are advertised through an OPC UA Local Discovery Service (LDS), available on
every OPC UA server host machine. Your system administrator can provide a list of server URLs for a
particular host, or you can query the host for all available OPC UA servers.

 Access Data from OPC UA Servers

17-13

If you have installed the LDS and registered the OPC UA server with the LDS, you can use the
opcuaserverinfo function to query hosts from the command line. If you have not installed the LDS,
skip to Step 2.

serverList = opcuaserverinfo('localhost')

serverList =
1x2 OPC UA ServerInfo array:
 index Description Hostname Port
 ----- ----------------------------- ------------ -----
 1 SimulationServer myhost.local 53530
 2 Quickstart Data Access Server myhost.local 62547

Locate the server of interest by using the findDescription function to search for a specific
character vector in the server description.

hsInfo = findDescription(serverList,'Simulation')

hsInfo =
OPC UA ServerInfo 'SimulationServer':

 Connection Information
 Hostname: 'myhost.local'
 Port: 53530

From this discovery process, you can identify the port (53530) on which the OPC UA server listens for
connections. The discovery process also makes it easier to construct and connect to the required OPC
UA server.

Step 2: Create an OPC UA Client and Connect to the Server
After locating your OPC UA server, you create an OPC UA Client to manage the connection to the
server, obtain key server characteristics, and read and write data from the server. You can use the
opcuaserverinfo result to construct an OPC UA client directly.

uaClient = opcua(hsInfo)

Or you could create a client using the hostname and port directly.

uaClient = opcua('localhost',53530)

uaClient =
OPC UA Client:

 Server Information:
 Name: 'SimulationServer@localhost'
 Hostname: 'localhost'
 Port: 53530
 EndpointUrl: 'opc.tcp://localhost:53530/OPCUA/SimulationServer'

 Connection Information:
 Timeout: 10
 Status: 'Disconnected'
 ServerState: '<Not connected>'

 Security Information:
 MessageSecurityMode: SignAndEncrypt
 ChannelSecurityPolicy: Aes256_Sha256_RsaPss
 Endpoints: [1×11 opc.ua.EndpointDescription]

The client is initially disconnected from the server, as shown by the Status property. After you
connect to the server, additional properties are shown in the client display.

17 OPC Unified Architecture (UA)

17-14

connect(uaClient)

uaClient

OPC UA Client:

 Server Information:
 Name: 'SimulationServer@localhost'
 Hostname: 'localhost'
 Port: 53530
 EndpointUrl: 'opc.tcp://localhost:53530/OPCUA/SimulationServer'

 Connection Information:
 Timeout: 10
 Status: 'Connected'
 ServerState: 'Running'

 Security Information:
 MessageSecurityMode: SignAndEncrypt
 ChannelSecurityPolicy: Aes256_Sha256_RsaPss
 Endpoints: [1×11 opc.ua.EndpointDescription]

 Server Limits:
 MinSampleRate: 0 sec
 MaxReadNodes: 0
 MaxWriteNodes: 0
 MaxHistoryReadNodes: 0
 MaxHistoryValuesPerNode: 0

The additional properties describe capabilities of the server, notably limits for various read and write
operations. A limit value of 0 indicates that the server does not impose a direct limit on that
capability.

Step 3: Browse OPC UA Server Namespace
OPC UA servers provide a single namespace for you to read and write both current data and
historical data. The namespace is organized as a hierarchy of nodes. Each node has attributes which
describe that node. A node is uniquely identified by two elements: A namespace index (numeric
integer) and a node identifier (numeric integer, character vector, or Globally Unique Identifier or
GUID). To uniquely describe a node, you have to provide both the namespaceindex and the identifier;
you cannot provide only the identifier because that might be repeated for different namespace
indexes.

Industrial Communication Toolbox exposes the hierarchy of nodes through the namespace property of
the OPC UA client. Each element of the namespace property is a node at the top-most level of the
server. Every node in the namespace has a Children property which exposes the subnodes
contained in that node. You can browse the namespace graphically using the browseNamespace
function. The resulting dialog box allows you to select nodes from the hierarchy and return them in
the output from the function.

serverNodes = browseNamespace(uaClient)

 Access Data from OPC UA Servers

17-15

When you click OK the selected items are returned in the command window output.

serverNodes =
1x2 OPC UA Node array:
 index Name NsInd Identifier NodeType Children
 ----- ---------------------- ----- ---------- -------- --------
 1 MinSupportedSampleRate 0 2272 Variable 0
 2 MaxArrayLength 0 11702 Variable 0

Nodes can have data values associated with them or can simply be containers for other nodes. The
NodeType property of a node identifies the node as an object node (container) or variable node
(data). For more information on how to programmatically search the server namespace, see “Browse
OPC UA Server Namespace” on page 21-44.

Step 4: Read Current Values from the OPC UA Server
OPC UA servers provide access to both current and historical values of their Variable nodes. With
Industrial Communication Toolbox you use arrays of Nodes to read current values from the server.
Current data includes the value, a timestamp that the server received the data value from the sensor,
and a quality describing the accuracy and source of the data value.

[val,ts,qual] = readValue(uaClient,serverNodes)

val =
 2×1 cell array
 {[0 sec]}
 {[65535]}
ts =
 2×1 datetime array
 10-Apr-2019 09:46:43
 10-Apr-2019 09:46:43

17 OPC Unified Architecture (UA)

17-16

qual =
OPC UA Quality ID:
 'Good'
 'Good'

For more information on reading and writing current values, see “Read and Write Current OPC UA
Server Data” on page 21-51.

Step 5: Read Historical Data from the OPC UA Server
Historical data is stored for selected nodes on the OPC UA server. The server nodes retrieved in the
previous step will not be archived by the server because the values do not generally change. You can
query the Historizing property of a Node to determine if the server is currently archiving data for
that node.

Because the serverNode list is an array, you must collect the outputs using concatenation.

[serverNodes.Historizing]

ans =
 0 0

None of the server nodes are currently being historized. In addition, the server does not allow
historical access to these nodes, as evidenced by the AccessLevelHistory property of the nodes.

{serverNodes.AccessLevelHistory}

ans =
 'none' 'none'

To locate nodes with history, query the server for the Double and Int32 nodes in the Simulation
parent node.

simNode = findNodeByName(uaClient.Namespace,'Simulation')

simNode =

OPC UA Node:

 Node Information:
 Name: 'Simulation'
 Description: 'The type for objects that organize other nodes.'
 NamespaceIndex: 5
 Identifier: '85/0:Simulation'
 NodeType: 'Object'

 Hierarchy Information:
 Parent: Server
 Children: 14

The Simulation node is an Object node, so it has no Value. However, it has 7 Children. Locate the
Sinusoid and Random child nodes. The '-partial' flag finds nodes beginning with the argument
provided.

sineNode = findNodeByName(simNode,'Sinusoid', '-partial');
randNode = findNodeByName(simNode,'Random', '-partial')

randNode =

OPC UA Node:

 Node Information:
 Name: 'Random1'

 Access Data from OPC UA Servers

17-17

 Description: ''
 NamespaceIndex: 5
 Identifier: 'Random1'
 NodeType: 'Variable'

 Hierarchy Information:
 Parent: 'Simulation'
 Children: 0

 ServerDataType: Double
 AccessLevelCurrent: read/write
 AccessLevelHistory: read
 Historizing: 0

Although the Sinusoid1 and Random1 nodes are not currently being archived (Historizing is
false) you can read history data from the nodes (the history was logged at startup, and then turned
off). To read all data stored on the server within a specified time range, use the readHistory
function, passing the nodes to read and the time range over which to read the data.
histData = readHistory(uaClient,[sineNode,randNode],datetime('now')-seconds(10),datetime('now'))

histData =
1-by-2 OPC UA Data object array:
 Timestamp Sinusoid1 Random1
 ----------------------- -------------------------- --------------------------
 2019-04-10 09:58:31.000 0.415823 [Good (Raw)] 0.131428 [Good (Raw)]
 2019-04-10 09:58:32.000 0.813473 [Good (Raw)] 0.038980 [Good (Raw)]
 2019-04-10 09:58:33.000 1.175570 [Good (Raw)] 0.316324 [Good (Raw)]
 2019-04-10 09:58:34.000 1.486290 [Good (Raw)] 0.229609 [Good (Raw)]
 2019-04-10 09:58:35.000 1.732051 [Good (Raw)] 0.208826 [Good (Raw)]
 2019-04-10 09:58:36.000 1.902113 [Good (Raw)] 0.483303 [Good (Raw)]
 2019-04-10 09:58:37.000 1.989044 [Good (Raw)] 0.393722 [Good (Raw)]
 2019-04-10 09:58:38.000 1.989044 [Good (Raw)] 0.206232 [Good (Raw)]
 2019-04-10 09:58:39.000 1.902113 [Good (Raw)] 0.116650 [Good (Raw)]
 2019-04-10 09:58:40.000 1.732051 [Good (Raw)] 0.391128 [Good (Raw)]

Obtain a summary of the data retrieved.

summary(histData)

1-by-2 OPC UA Data object:
 Name Value Start Timestamp End Timestamp Quality
 --------- ---------------- ----------------------- ----------------------- -----------------------------
 Sinusoid1 10 double values 2019-04-10 09:58:31.000 2019-04-10 09:58:40.000 1 unique quality [Good (Raw)]
 Random1 10 double values 2019-04-10 09:58:31.000 2019-04-10 09:58:40.000 1 unique quality [Good (Raw)]

Step 6: Plot the Data
You can plot the data directly from the resulting opc.ua.Data object.

plot(histData)
legend show

You can also convert the data into MATLAB native data types for further processing. For information
on processing data, see “Visualize and Preprocess OPC UA Data” on page 21-61.

Step 7: Clean Up
When you have finished exchanging data with the OPC server, you should disconnect from the server.

disconnect(uaClient)

You can then clear the OPC UA variables from MATLAB memory. If you clear an OPC UA client from
memory, the connection to the server is automatically closed.

17 OPC Unified Architecture (UA)

17-18

Non-OPC Technologies

19

Controlling Devices Using Modbus

• “Modbus Interface Supported Features” on page 18-2
• “Create a Modbus Connection” on page 18-3
• “Configure Properties for Modbus Communication” on page 18-5
• “Read Data from a Modbus Server” on page 18-8
• “Read Temperature from a Remote Temperature Sensor” on page 18-13
• “Write Data to a Modbus Server” on page 18-14
• “Write and Read Multiple Holding Registers” on page 18-16
• “Modify the Contents of a Holding Register Using a Mask Write” on page 18-18
• “Use the Modbus Explorer App” on page 18-19
• “Configure a Connection in the Modbus Explorer” on page 18-20
• “Read Coils, Inputs, and Registers in the Modbus Explorer” on page 18-23
• “Write to Coils and Holding Registers in the Modbus Explorer” on page 18-26
• “Control a PLC Using the Modbus Explorer” on page 18-28
• “Generate a Script from Your Modbus Explorer Session” on page 18-33
• “Troubleshooting the Modbus Interface” on page 18-36

18

Modbus Interface Supported Features
In this section...
“Modbus Capabilities” on page 18-2
“Supported Platforms for Modbus” on page 18-2

Modbus Capabilities
Industrial Communication Toolbox supports the Modbus interface over TCP/IP or Serial RTU. You can
use it to communicate with Modbus servers, such as controlling a PLC (Programmable Logic
Controller), communicating with a temperature controller, controlling a stepper motor, sending data
to a DSP, reading bulk memory from a PAC controller, or monitoring temperature and humidly on a
Modbus probe.

Using the Modbus interface, you can do the following tasks, which correspond to the Modbus
function codes listed in the table.

Functionality Modbus Function Code
Read and write coils 1, 5, 15
Read discrete inputs 2
Read and write holding registers 3, 6, 16
Read input registers 4
Perform mask writes on holding registers 22
Perform write/read (in one operation) on holding
registers

23

Supported Platforms for Modbus
Industrial Communication Toolbox supports the Modbus interface over TCP/IP or Serial RTU. It is
supported on the following platforms.

• Linux® 64-bit
• Mac OS 64-bit
• Microsoft Windows 64-bit

18 Controlling Devices Using Modbus

18-2

Create a Modbus Connection
Industrial Communication Toolbox supports the Modbus interface over TCP/IP or Serial RTU. You can
use it to communicate with Modbus servers, such as a PLC. The typical workflow is:

• Create a Modbus connection to a server or hardware.
• Configure the connection if necessary.
• Perform read and write operations, such as communicating with a temperature controller.
• Clear and close the connection.

To communicate over the Modbus interface, you first create a Modbus object using the modbus
function. Creating the object also makes the connection. The syntax is:

<objname> = modbus('Transport','DeviceAddress')

or

<objname> = modbus('Transport','Port')

You must set the transport type as either 'tcpip' or 'serialrtu' to designate the protocol you
want to use. Then set the address and port, as shown in the next sections. You can also use
arguments in the object creation to set properties such as Timeout and ByteOrder.

When you create the Modbus object, it connects to the server or hardware. If the transport is
'tcpip', then DeviceAddress must be specified. Port is optional and defaults to 502 (reserved port
for Modbus). If the transport is 'serialrtu', then 'Port' must be specified.

Create Object Using TCP/IP Transport

When the transport is 'tcpip', you must specify DeviceAddress. This is the IP address or host
name of the Modbus server. Port is the remote port used by the Modbus server. Port is optional and
defaults to 502, which is the reserved port for Modbus.

This example creates the Modbus object m using the device address shown and port of 308.

m = modbus('tcpip', '192.168.2.1', 308)

m =

 Modbus TCPIP with properties:

 DeviceAddress: '192.168.2.1'
 Port: 308
 Status: 'open'
 NumRetries: 1
 Timeout: 10 (seconds)
 ByteOrder: 'big-endian'
 WordOrder: 'big-endian'

Create Object Using Serial RTU Transport

When the transport is 'serialrtu', you must specify 'Port'. This is the serial port the Modbus
server is connected to.

This example creates the Modbus object m using port 'COM3'.

 Create a Modbus Connection

18-3

m = modbus('serialrtu','COM3')

m =

 Modbus Serial RTU with properties:

 Port: 'COM3'
 BaudRate: 9600
 DataBits: 8
 Parity: 'none'
 StopBits: 1
 Status: 'open'
 NumRetries: 1
 Timeout: 10 (seconds)
 ByteOrder: 'big-endian'
 WordOrder: 'big-endian'

Create an Object with a Property Setting

You can create the object using a name-value pair to set properties such as Timeout. The Timeout
property specifies the maximum time in seconds to wait for a response from the Modbus server, and
the default is 10. You can change the value either during object creation or after you create the
object.

For the list and description of properties you can set for both transport types, see “Configure
Properties for Modbus Communication” on page 18-5.

This example creates a Modbus object using Serial RTU, with an increased Timeout of 20 seconds.

m = modbus('serialrtu','COM3','Timeout'=20)

m =

 Modbus Serial RTU with properties:

 Port: 'COM3'
 BaudRate: 9600
 DataBits: 8
 Parity: 'none'
 StopBits: 1
 Status: 'open'
 NumRetries: 1
 Timeout: 20 (seconds)
 ByteOrder: 'big-endian'
 WordOrder: 'big-endian'

The object display in the output shows the specified Timeout property value.

18 Controlling Devices Using Modbus

18-4

Configure Properties for Modbus Communication
The modbus object has the following properties.

Property Transport Type Description
'DeviceAddress' TCP/IP only IP address or host name of Modbus server, for example,

'192.168.2.1'. Required during object creation if
transport is TCP/IP.

m = modbus('tcpip', '192.168.2.1')
Port TCP/IP only Remote port used by Modbus server. Optional: default is

502.

m = modbus('tcpip', '192.168.2.1', 308)
'Port' Serial RTU only Serial port that Modbus server is connected to, for

example, 'COM1'. Required during object creation if
transport is Serial RTU.

m = modbus('serialrtu','COM3')
Timeout TCP/IP and

Serial RTU
Maximum time in seconds to wait for a response from the
Modbus server, specified as a positive value of type
double. The default is 10. You can set the value during
object creation or afterward.

m.Timeout = 30;
'NumRetries' TCP/IP and

Serial RTU
Number of retries to perform if there is no reply from the
server after a timeout. If using the Serial RTU transport,
the message is resent. If using the TCP/IP transport, the
connection is closed and reopened.

m.NumRetries = 5;
'ByteOrder' TCP/IP and

Serial RTU
Byte order of values written to or read from 16-bit
registers. Valid choices are 'big-endian' and 'little-
endian'. The default is 'big-endian', as specified by
the Modbus standard.

m.ByteOrder = 'little-endian';
'WordOrder' TCP/IP and

Serial RTU
Word order for register reads and writes that span
multiple 16-bit registers. Valid choices are 'big-endian'
and 'little-endian'. The default is 'big-endian',
and it is device-dependent.

m.WordOrder = 'little-endian';
'BaudRate' Serial RTU only Bit transmission rate for serial port communication.

Default is 9600 bits per second, but the actual required
value is device-dependent.

m.Baudrate = 28800;

 Configure Properties for Modbus Communication

18-5

Property Transport Type Description
'DataBits' Serial RTU only Number of data bits to transmit. Default is 8, which is the

Modbus standard for Serial RTU. Other valid values are 5,
6, and 7.

m.DataBits = 6;
'Parity' Serial RTU only Type of parity checking. Valid options are 'none'

(default), 'even', 'odd', 'mark', and 'space'. The
actual required value is device-dependent. If set to the
default of none, parity checking is not performed, and the
parity bit is not transmitted.

m.Parity = 'odd';
'StopBits' Serial RTU only Number of bits to indicate the end of data transmission.

Valid choices are 1 (default) and 2. Actual required value is
device-dependent, though 1 is typical for even/odd parity,
and 2 for no parity.

m.StopBits = 2;

Set a Property During Object Creation

You can change property values either during object creation or after you create the object. To set
property values during object creation, specify name-value pair arguments to the modbus function
call.

This example creates a Modbus object and increases the Timeout to 20 seconds.

m = modbus('serialrtu','COM3','Timeout'=20)

m =

 Modbus Serial RTU with properties:

 Port: 'COM3'
 BaudRate: 9600
 DataBits: 8
 Parity: 'none'
 StopBits: 1
 Status: 'open'
 NumRetries: 1
 Timeout: 20 (seconds)
 ByteOrder: 'big-endian'
 WordOrder: 'big-endian'

The object display in the output shows the specified Timeout property value.

Set a Property After Object Creation

You can change a property value on an existing object with this syntax.

<object_name>.<property_name> = <property_value>

This example using the Modbus object m, increases the Timeout to 30 seconds.

18 Controlling Devices Using Modbus

18-6

m = modbus('serialrtu','COM3');
m.Timeout = 30

This example changes the Parity from the default of 'none' to 'even'.

m = modbus('serialrtu','COM3');
m.Parity = 'even';

 Configure Properties for Modbus Communication

18-7

Read Data from a Modbus Server
In this section...
“Types of Data You Can Read over Modbus” on page 18-8
“Read Coils over Modbus” on page 18-8
“Read Inputs over Modbus” on page 18-9
“Read Input Registers over Modbus” on page 18-9
“Read Holding Registers over Modbus” on page 18-10
“Specify Server ID and Precision” on page 18-10
“Read Mixed Data Types” on page 18-11

Types of Data You Can Read over Modbus
The read function performs read operations from four types of target-addressable areas:

• Coils
• Inputs
• Input registers
• Holding registers

When you perform the read, you must specify the target type (target), the starting address
(address), and the number of values to read (count). You can also optionally specify the address of
the server (serverId) for any target type, and the data format (precision) for registers.

For an example showing the entire workflow of reading a holding register on a PLC, see “Read
Temperature from a Remote Temperature Sensor” on page 18-13.

Read Coils over Modbus
If the read target is coils, the function reads the values from 1–2000 contiguous coils in the remote
server, starting at the specified address. A coil is a single output bit. A value of 1 indicates the coil is
on and a value of 0 means it is off.

The syntax to read coils is:

read(obj,'coils',address,count)

The obj parameter is the name of the Modbus object. The following examples assume you have
created a Modbus object, m. For information on creating the object, see “Create a Modbus
Connection” on page 18-3.

The address parameter is the starting address of the coils to read, specified as a double. The count
parameter is the number of coils to read, specified as a double. If the read is successful, it returns a
vector of double values of 1 or 0, where the first value in the vector corresponds to the coil value at
the starting address.

This example reads 8 coils, starting at address 1.

read(m,'coils',1,8)

18 Controlling Devices Using Modbus

18-8

ans =

 1 1 0 1 1 0 1 0

You can also read values into a variable for later access.

data = read(m,'coils',1,8)

data =

 1 1 0 1 1 0 1 0

Read Inputs over Modbus
If the read target is inputs, the function reads the values from 1–2000 contiguous discrete inputs in
the remote server, starting at the specified address. A discrete input is a single input bit. A value of 1
indicates the input is on, and a value of 0 means it is off.

The syntax to read inputs is:

read(obj,'inputs',address,count)

The obj parameter is the name of the Modbus object. The following examples assume you have
created a Modbus object, m. For information on creating the object, see “Create a Modbus
Connection” on page 18-3.

The address parameter is the starting address of the inputs to read, specified as a double. The
count parameter is the number of inputs to read, specified as a double. If the read operation is
successful, it returns a vector of double values of 1 or 0, where the first value in the vector
corresponds to the input value at the starting address.

This example reads 10 discrete inputs, starting at address 2.

read(m,'inputs',2,10)

ans =

 1 1 0 1 1 0 1 0 0 1

Read Input Registers over Modbus
If the read target is input registers, the function reads the values from 1–125 contiguous input
registers in the remote server, starting at the specified address. An input register is a 16-bit read-only
register.

The syntax to read input registers is:

read(obj,'inputregs',address,count)

The obj parameter is the name of the Modbus object. The following examples assume you have
created a Modbus object, m. For information on creating the object, see “Create a Modbus
Connection” on page 18-3.

The address parameter is the starting address of the input registers to read, specified as a double.
The count parameter is the number of input registers to read, specified as a double. If the read

 Read Data from a Modbus Server

18-9

operation is successful, it returns a vector of doubles. Each double represents a 16-bit register value,
where the first value in the vector corresponds to the input register value at the starting address.

This example reads 4 input registers, starting at address 20.

read(m,'inputregs',20,4)

ans =

 27640 60013 51918 62881

Read Holding Registers over Modbus
If the read target is holding registers, the function reads the values from 1–125 contiguous holding
registers in the remote server, starting at the specified address. A holding register is a 16-bit read/
write register.

The syntax to read inputs is:

read(obj,'holdingregs',address,count)

The obj parameter is the name of the Modbus object. The following examples assume you have
created a Modbus object, m. For information on creating the object, see “Create a Modbus
Connection” on page 18-3.

The address parameter is the starting address of the holding registers to read,specified as a double.
The count parameter is the number of holding registers to read, specified as a double. If the read
operation is successful, it returns a vector of doubles. Each double represents a 16-bit register value,
where the first value in the vector corresponds to the holding register value at the starting address.

This example reads 4 holding registers, starting at address 20.

read(m,'holdingregs',20,4)

ans =

 27640 60013 51918 62881

For an example showing the entire workflow of reading a holding register on a PLC, see “Read
Temperature from a Remote Temperature Sensor” on page 18-13.

Specify Server ID and Precision
You can read any of the four types of targets and also specify the optional parameters for server ID,
and can specify precision for registers.

Server ID Option

The serverId argument specifies the address of the server to send the read command to. Valid
values are 0–247, with 0 being the broadcast address. This argument is optional, and the default is 1.

Note If your device uses a slaveID property, it might work to use it as the serverID property with
the read command as described here.

18 Controlling Devices Using Modbus

18-10

The syntax to specify server ID is:

read(obj,target,address,count,serverId)

This example reads 8 coils starting at address 1 from server ID 3.

read(m,'coils',1,8,3)

Precision Option

The 'precision' argument specifies the data format of the register being read on the Modbus
server. Valid values are 'uint16', 'int16', 'uint32', 'int32', 'uint64', 'int64', 'single',
and 'double'. This argument is optional, and the default is 'uint16'.

Note that 'precision' does not refer to the return type, which is always 'double'. It only
specifies how to interpret the register data.

The syntax to specify precision is:

read(obj,target,address,count,precision)

This example reads 8 holding registers starting at address 1 using a precision of 'uint32'.

read(m,'holdingregs',1,8,'uint32')

Both Options

You can set both the serverId option and the 'precision' option together when the target is a
register. When you use both options, the serverId is listed first after the required arguments.

The syntax to specify both Server ID and precision is:

read(obj,target,address,count,serverId,precision)

This example reads 8 holding registers starting at address 1 using a precision of 'uint32' from
Server ID 3.

read(m,'holdingregs',1,8,3,'uint32')

Read Mixed Data Types
You can read contiguous values of different data types (precisions) in a single read operation by
specifying the data type for each value. You can do that within the syntax of the read function, or set
up variables containing arrays of counts and precisions. Both methods are shown here.

Within the read Syntax

An example of the read function with one data type is:

read(m,'holdingregs',500,10,'uint32')

In that example, the target type is holding registers, the starting address is 500, the count is 10, and
the precision is uint32. To read 10 values of mixed data types, you can use this syntax:
read(m,'holdingregs',500,[3 2 3 2],{'uint16','single','double','int16'})

You use arrays to specify both counts and precisions. In this case, the counts are 3, 2, 3, and 2. The
function reads 3 values of data type uint16, 2 values of data type single, 3 values of data type

 Read Data from a Modbus Server

18-11

double, and 2 values of data type int16. The registers are contiguous, starting at address 500. This
example reads 3 uint16 values from addresses 500-502, 2 single values from addresses 503-506,
3 double values from addresses 507-518, and 2 int16 values from addresses 519-520, all in one
operation.

Use Variables

Instead of using literal arrays inside the read function as shown above, you can specify variables
with array values as function arguments. The equivalent for the example shown above is:

count = [3 2 3 2]
precision = {'uint16','single','double','int16'}
read(m,'holdingregs',500,count,precision)

Using variables is convenient when you have a lot of values to read and they are of mixed data types.

18 Controlling Devices Using Modbus

18-12

Read Temperature from a Remote Temperature Sensor
This example shows how to read temperature and humidity measurements from a remote sensor on a
PLC connected via TCP/IP. The temperature sensor is connected to a holding register at address 1 on
the board, and the humidity sensor is at address 5.

1 Create the Modbus object, using TCP/IP.

m = modbus('tcpip', '192.168.2.1', 502)

m =

 Modbus TCPIP with properties:

 DeviceAddress: '192.168.2.1'
 Port: 502
 Status: 'open'
 NumRetries: 1
 Timeout: 10 (seconds)
 ByteOrder: 'big-endian'
 WordOrder: 'big-endian'

2 The humidity sensor does not always respond instantly, so increase the timeout value to 20
seconds.

m.Timeout = 20
3 The temperature sensor is connected to a holding register at address 1 on the board. Read one

value to get the current temperature reading. As the temperature value is a double, set the
precision to double.

read(m,'holdingregs',1,1,'double')

ans =

 46.7
4 The humidity sensor is connected to the holding register at address 5 on the board. Read one

value to get the current humidity reading.

read(m,'holdingregs',5,1,'double')

ans =

 35.8
5 Disconnect from the server and clear the object.

clear m

 Read Temperature from a Remote Temperature Sensor

18-13

Write Data to a Modbus Server
In this section...
“Types of Data You Can Write to over Modbus” on page 18-14
“Write Coils over Modbus” on page 18-14
“Write Holding Registers over Modbus” on page 18-14

Types of Data You Can Write to over Modbus
The write function performs write operations to two types of target addressable areas:

• Coils
• Holding registers

Each of the two areas can accept a write request to a single address or a contiguous address range.
When you perform the write operation, you must specify the target type (target), the starting
address (address), and the values to write (values). You can also optionally specify the address of
the server (serverId) and the data format (precision).

Write Coils over Modbus
If the write target is coils, the function writes a contiguous sequence of 1–1968 coils to either on or
off (1 or 0) in a remote device. A coil is a single output bit. A value of 1 indicates the coil is on, and a
value of 0 means it is off.

The syntax to write to coils is:

write(obj,'coils',address,values)

The obj parameter is the name of the Modbus object. The following examples assume you have
created a Modbus object, m. For information on creating the object, see “Create a Modbus
Connection” on page 18-3.

The address parameter is the starting address of the coils to write to, specified as a double. The
values parameter is an array of values to write. For a target of coils, valid values are 0 and 1.

This example writes to 4 coils, starting at address 8289.

write(m,'coils',8289,[1 1 0 1])

You can also create a variable for the values to write.

values = [1 1 0 1];
write(m,'coils',8289,values)

Write Holding Registers over Modbus
If the write target is holding registers, the function writes a block of 1–123 contiguous registers in a
remote device. Values whose representation is greater than 16 bits are stored in consecutive register
addresses.

The syntax to write to holding registers is:

18 Controlling Devices Using Modbus

18-14

write(obj,'holdingregs',address,values)

The obj parameter is the name of the Modbus object. The following examples assume you have
created a Modbus object, m. For information on creating the object, see “Create a Modbus
Connection” on page 18-3.

The address parameter is the starting address of the holding registers to write to, specified as a
double. The values parameter is an array of values to write. For a target of holding registers, valid
values must be in the range of the specified precision.

This example sets the register at address 49153 to 2000.

write(m,'holdingregs',49153,2000)

Precision Option

The 'precision' argument specifies the data format of the register being written to on the Modbus
server. Valid values are 'uint16', 'int16', 'uint32', 'int32', 'uint64', 'int64', 'single',
and 'double'. This argument is optional, and the default is 'uint16'.

The values passed in to be written are converted to register values based on the specified precision.
For precision values 'int32', 'uint32', and 'single', each value corresponds to two registers,
and for 'uint64', 'int64' and 'double', each value corresponds to four registers. For 'int16'
and 'uint16', each value is from one 16-bit register.

This example writes 3 values as single precision, starting at address 29473.

write(m,'holdingregs',29473,[928.1 50.3 24.4],'single')

 Write Data to a Modbus Server

18-15

Write and Read Multiple Holding Registers
The writeRead function performs a combination of one write operation and one read operation on
groups of holding registers in a single Modbus transaction. The write operation is always performed
before the read. The range of addresses to read and the range of addresses to write must be
contiguous, but each is specified independently and they can overlap.

The syntax for the write-read operation to holding registers is:

writeRead(obj,writeAddress,values,readAddress,readCount)

The obj parameter is the name of the Modbus object. The following examples assume you have
created a Modbus object, m. For information on creating the object, see “Create a Modbus
Connection” on page 18-3.

The writeAddress is the starting address of the holding registers to write to, specified as a double.
The values parameter is an array of values to write. The first value in the vector is written to the
writeAddress. Each value must be in the range 0–65535.

The readAddress is the starting address of the holding registers to read, and readCount is the
number of registers to read.

If the operation is successful, it returns an array of doubles, each representing a 16-bit register value,
where the first value in the vector corresponds to the register value at the address specified in
readAddress.

This example writes two holding registers starting at address 601, and reads 4 holding registers
starting at address 19250.

writeRead(m,601,[1024 512],19250,4)

ans =

 27640 60013 51918 62881

You can optionally create variables for the values to be written, instead of including the literal array
of values in the function syntax. The same example could be written this way, using a variable for the
write values:

values = [1024 512];
writeRead(m,601,values,19250,4)

ans =

 27640 60013 51918 62881

Server ID Option

The serverId argument specifies the address of the server to send the read command to. Valid
values are 0–247, with 0 being the broadcast address. This argument is optional, and the default is 1.

Note If your device uses a slaveID property, it might work to use it as the serverID property with
the writeRead command as described here.

The syntax to specify a server ID is:

18 Controlling Devices Using Modbus

18-16

writeRead(obj,writeAddress,values,readAddress,readCount,serverId)

This example writes 3 holding registers starting at address 400, and reads 4 holding registers
starting at address 52008, from server ID 6.

writeRead(m,400,[1024 512 680],52008,4,6)

ans =

 38629 84735 29456 39470

Precision Option

The 'writePrecision' and 'readPrecision' arguments specify the data format of the register
being read from or written to on the Modbus server. Valid values are 'uint16', 'int16',
'uint32', 'int32', 'uint64', 'int64', 'single', and 'double'. This argument is optional,
and the default is 'uint16'.

The values passed in to be written are converted to register values based on the specified precision.
For precision values 'int32', 'uint32', and 'single', each value corresponds to two registers,
and for 'uint64', 'int64' and 'double', each value corresponds to four registers. For 'int16'
and 'uint16', each value is from one 16-bit register.

Note that precision specifies how to interpret or convert the register data, not the return type of the
read operation. The data returned is always of type double.

The syntax for designating the write and read precision is:
writeRead(obj,writeAddress,values,writePrecision,readAddress,readCount,readPrecision)

If you want to use the serverId argument as well, it goes after the readPrecision.

This example writes 3 holding registers starting at address 400 and reads 4 holding registers starting
at address 52008, from server ID 6. It also specifies a writePrecision of 'uint64' and a
readPrecision of 'uint32'.

writeRead(m,400,[1024 512 680],'uint64',52008,4,'uint32',6)

ans =

 38629 84735 29456 39470

This example reads two holding registers starting at address 919, and writes 3 holding registers
starting at address 719, formatting the read and write values for single precision data registers.

 values = [1.14 5.9 11.27];
 writeRead(m,719,values,'single',919,2,'single')

 Write and Read Multiple Holding Registers

18-17

Modify the Contents of a Holding Register Using a Mask Write
You can modify the contents of a holding register using the maskWrite function. The function can set
or clear individual bits in a specific holding register. It performs a read/modify/write operation, using
a combination of an AND mask, an OR mask, and the current contents of the register.

The function algorithm works as follows:

 Result = (register value AND andMask) OR (orMask AND (NOT andMask))

For example:

 Hex Binary
Current contents 12 0001 0010
And_Mask F2 1111 0010
Or_Mask 25 0010 0101
(NOT And_Mask) 0D 0000 1101
 -- ----------
Result 17 0001 0111

If the orMask value is 0, the result is simply the logical ANDing of the current contents and the
andMask. If the andMask value is 0, the result is equal to the orMask value.

The contents of the register can be read by using the read function with the target set to
'holdingregs'. However, the contents values could be changed subsequently as the controller
scans its user logic program.

The syntax for the mask write operation for holding registers is:

maskWrite(obj, address, andMask, orMask)

If you want to designate a server ID, use:

maskWrite(obj, address, andMask, orMask, serverId)

The obj parameter is the name of the Modbus object. The following examples assume you have
created a Modbus object, m. For information on creating the object, see “Create a Modbus
Connection” on page 18-3.

The address is the register address to perform mask write on. The andMask argument is the AND
value to use in the mask write operation. The valid range is 0–65535. The orMask argument is the
OR value to use in the mask write operation. The valid range is 0–65535.

This example establishes bit 0 at address 20, and performs a mask write operation. Because the
andMask is 6, that clears all bits except for bits 1 and 2, which are preserved.

andMask = 6
orMask = 0
maskWrite(m,20,andMask,orMask)

18 Controlling Devices Using Modbus

18-18

Use the Modbus Explorer App

You can read and write to coils and registers using the Modbus Explorer app. The app supports a
subset of the MATLAB Modbus functionality. You can do the following in the Modbus Explorer:

• Read coils, inputs, registers, and holding registers. This is the functionality of the Modbus read
function.

• Write to coils and holding registers. This is the functionality of the Modbus write function.

The app does not support the functionality of the Modbus writeRead function or the maskWrite
function.

The Modbus Explorer offers a graphical user interface to easily set up reads and writes, and a live
plot to see the values. The read table allows you to easily organize and manage reads for multiple
addresses, such as different sensors on a PLC.

To launch the Modbus Explorer, do one of these:

• In the MATLAB Apps tab, under Test & Measurement, select Modbus Explorer.
• At the MATLAB command line, type modbusExplorer.

To use the Modbus Explorer, you need to configure your device and connect over TCP/IP or Serial
RTU. For information about how to configure and connect to your device, see “Configure a
Connection in the Modbus Explorer” on page 18-20. Once a device is configured and recognized by
MATLAB, it appears for selection on the Modbus Explorer startup screen.

After you have successfully configured your device in the Configure tab, click Confirm Parameters
to open the read and write section of the Modbus Explorer. You can then perform reads and writes.
For information about doing reads, see “Read Coils, Inputs, and Registers in the Modbus Explorer” on
page 18-23. For information about doing writes, see “Write to Coils and Holding Registers in the
Modbus Explorer” on page 18-26.

See Also

Related Examples
• “Configure a Connection in the Modbus Explorer” on page 18-20
• “Read Coils, Inputs, and Registers in the Modbus Explorer” on page 18-23
• “Write to Coils and Holding Registers in the Modbus Explorer” on page 18-26
• “Control a PLC Using the Modbus Explorer” on page 18-28
• “Generate a Script from Your Modbus Explorer Session” on page 18-33

 Use the Modbus Explorer App

18-19

Configure a Connection in the Modbus Explorer
The first step in using the Modbus Explorer to communicate with a PLC or other Modbus device is
to configure the communication with the device, either over TCP/IP or Serial RTU.

Communicate over TCP/IP
1 Open the Modbus Explorer. On the MATLAB Apps tab, under Test & Measurement, select

Modbus Explorer.
2 Choose your communication interface in the Modbus Explorer by clicking Configure Modbus

TCP/IP.
3 On the Configure tab, configure the connection to your device by setting the following TCP/IP

communication parameters in the toolstrip:
Device Address: IP address of Modbus server, for example 192.168.2.20. This parameter is
required to make the connection.
Port: Remote port used by the Modbus server. The default is 502. Change it if using a
different port number.
Timeout: Maximum time in seconds to wait for a response from the Modbus server,
specified as a positive value. The default is 3. You can edit the value to increase or decrease
the timeout. Note that the default when using the Timeout property programmatically is 10
seconds. If your device requires more than the default of 3 seconds in the app, increase the
value.
Byte Order: Byte order of values written to or read from 16-bit registers. The default is Big
Endian, as specified by the Modbus standard. If your device requires Little Endian, change
the value in the drop-down.
Word Order: Word order for register reads and writes that span multiple 16-bit registers.
The default is Big Endian, and it is device-specific. If your device requires Little Endian,
change the value in the drop-down.

4 Configure the reading of data from your device by setting the following read parameters in the
toolstrip:

Server ID: Address of the server to send the read command to. If you do not specify a Server
ID, the default of 1 is used. Valid values are 1-247.
Register Type: Target type to read. You can perform a Modbus read operation on four types
of targets: coils, inputs, input registers, and holding registers.
Register Address: Starting address to read from, specified as a double. Enter the number
for your starting address.
Precision: Data format of the register being read from on the Modbus server. For coils and
inputs, the precision is always bit. For holding registers and input resisters, you can specify
precisions such as uint16.

5 To test the configuration, click Read. If your configuration parameters are correct, the read is
successful and the Read Value populates with the value from the read. If you see 'ERROR' in the
Read Value field, adjust the parameters until the read is successful.

This value needs to match the value listed in your device manual. Make sure this value and the
other configuration parameters match the specifications for your device.

6 Once you have a correct read value, click Confirm Parameters. The rest of the tab appears, and
your device is listed in the Device List on the left side of the app.

7 The register details you enter in the Configure tab are shown in the first row of the register
table. You then use the table to set up reads from your device, or press Import to import a table
of information that you previously exported.

18 Controlling Devices Using Modbus

18-20

For information about setting up reads, see “Read Coils, Inputs, and Registers in the Modbus
Explorer” on page 18-23.

Communicate over Serial RTU
1 Open the Modbus Explorer. In the MATLAB Apps tab, under Test & Measurementselect,

Modbus Explorer.
2 Choose your communication interface in the Modbus Explorer by clicking Configure Modbus

Serial.
3 On Configure tab, configure the connection to your device by setting the following Serial RTU

communication parameters in the toolstrip:
Port: Serial port Modbus server is connected to, for example COM1.
Baud Rate: Bit transmission rate for serial port communication. The default is 9600 bits per
seconds, but the actual required value is device-dependent. Change the value in the drop-
down if your device requires a different baud rate. Enter your baud rate value if it is not in
the list.
Parity: Type of parity checking. Valid choices are none (default), even, and odd. The actual
required value is device-dependent. If set to the default of none, parity checking is not
performed, and the parity bit is not transmitted.
Stop Bits: Number of bits used to indicate the end of data transmission. Valid choices are 1
(default) and 2. The required value is device-dependent, though 1 is typical for even/odd
parity and 2 for no parity.
Data Bits: Number of data bits to transmit. The default is 8, which is the Modbus standard
for Serial RTU. Other valid values are 5, 6, and 7.
Timeout: Maximum time in seconds to wait for a response from the Modbus server,
specified as a positive value. The default is 3. You can edit the value to increase or decrease
the timeout. Note that the default when using the Timeout property programmatically is 10
seconds. If your device requires more than the default of 3 seconds in the app, increase the
value.
Byte Order: Byte order of values written to or read from 16-bit registers. The default is Big
Endian, as specified by the Modbus standard. If your device requires Little Endian, change
the value in the drop-down.
Word Order: Word order for register reads and writes that span multiple 16-bit registers.
The default is Big Endian, and it is device-specific. If your device requires Little Endian,
change the value in the drop-down.

4 Configure the reading of data from your device by setting the following read parameters in the
toolstrip:

Server ID: Address of the server to send the read command to. If you do not specify a Server
ID, the default of 1 is used. Valid values are 1-247.
Register Type: Target type to read. You can perform a Modbus read operation on four types
of targets: coils, inputs, input registers, and holding registers. Use the drop-down to select
your type.
Register Address: Starting address to read from, specified as a double. Enter the number
for your starting address.
Precision: Data format of the register being read from on the Modbus server. For coils and
inputs, the precision is always bit. For holding registers and input resisters, you can specify
precisions such as uint16.

5 To test the configuration, click Read. If your configuration parameters are correct, the read is
successful and the Read Value fills in with the value from the read. If you see 'ERROR' in the
Read Value field, adjust the parameters until the read is successful.

 Configure a Connection in the Modbus Explorer

18-21

This value needs to match the value listed in your device manual. Make sure this value and the
other configuration parameters match the specifications for your device.

6 Once you have a correct read value, click Confirm Parameters. The rest of the tab appears, and
your device is listed in the Device List on the left side of the app.

7 The register details you enter in the Configure tab are shown in the first row of the register
table. You then use the table to set up reads from your device, or press Import to import a table
of information that you previously exported.

For information about setting up reads, see “Read Coils, Inputs, and Registers in the Modbus
Explorer” on page 18-23.

See Also

Related Examples
• “Read Coils, Inputs, and Registers in the Modbus Explorer” on page 18-23
• “Write to Coils and Holding Registers in the Modbus Explorer” on page 18-26
• “Control a PLC Using the Modbus Explorer” on page 18-28
• “Generate a Script from Your Modbus Explorer Session” on page 18-33

18 Controlling Devices Using Modbus

18-22

Read Coils, Inputs, and Registers in the Modbus Explorer
You can read coils, inputs, input registers, and holding registers in the Modbus Explorer. This is the
functionality of the Modbus read function.

You must first configure your device before performing read operations. For information on how to
configure and connect to your device, see “Configure a Connection in the Modbus Explorer” on page
18-20.

1 To perform a read operation, enter the information about the coils, inputs, registers, or holding
registers you want to control in the Read Registers table. The first row of the table is already
filled in with the register you configured on the Configure tab.

2 To set up another register, click Insert. For each inserted row, click the Address field and enter
the address of the coil, input, input register, or holding register you want to read values from.

3 In the Register Type column, click the down arrow to select the target type to read. You can
perform a Modbus read operation on four types of targets: coils, inputs, input registers, and
holding registers.

4 In the Precision column, click the down arrow to select the precision. Choose the data format of
the register being read from on the Modbus server.

5 In the Name column, enter a name. A default name is provided, and you can keep it or change it.
6 Once you have entered all of the fields, click Resume Reads to start reading.

If the read is successful, the Read Value column fills in with the read value. If you see 'ERROR'
in the Read Value field, adjust the parameters until the read is successful.

7 To read multiple registers, add rows to the table by clicking Insert on the toolstrip. New rows
are added to the top of the table. You can add as many rows as you need. For each row, fill in all
of the fields for that read. While you are editing a row, reading is paused, as indicated by the
PAUSED status to the left of the Resume Reads button.

8 After you set up the table, click Resume Reads.

The reads are performed and the status changes to LIVE. You can also see the read values in the
live plot.

 Read Coils, Inputs, and Registers in the Modbus Explorer

18-23

9 If you want to alter the plot, use the Plot Tools section. You can change the axes, show or hide
the legend, and select which registers to display in the plot. The plot changes dynamically when
you change any of these factors using the plot tools.

Edit the Read Registers Table
You can manipulate the register table by using the buttons in the toolstrip and the check boxes in the
table.

• Insert - Insert a blank row at the top of the table.
• Delete - Delete selected rows. Use the check boxes in the table to select rows to delete.
• Move Up - Move up selected rows one position in the table. Use the check boxes in the table to

select rows to move.
• Move Down - Move down selected rows one position in the table. Use the check boxes in the table

to select rows to move.
• Sort - Sort the register table data by column value. Click Sort and choose Name to sort in

alphabetic order of name, Address for ascending order of address, Register Type for
alphabetical order of register type, or Precision for alphabetical order of precision.

18 Controlling Devices Using Modbus

18-24

Import or Export Read Data
You can export the contents of the Read Registers table to use again later.

To export the register table configuration, click the Export button in the toolstrip. In the Save dialog
box, choose a file name and navigate to the save location, then click Save. The table is saved as a
MAT-file.

To import the contents back into the Read Registers table, click Import in the toolstrip. In the Load
dialog box, navigate to the saved MAT-file, select it, and click Open.

See Also

Related Examples
• “Configure a Connection in the Modbus Explorer” on page 18-20
• “Write to Coils and Holding Registers in the Modbus Explorer” on page 18-26
• “Control a PLC Using the Modbus Explorer” on page 18-28
• “Generate a Script from Your Modbus Explorer Session” on page 18-33

 Read Coils, Inputs, and Registers in the Modbus Explorer

18-25

Write to Coils and Holding Registers in the Modbus Explorer
You can write to coils and holding registers in the Modbus Explorer. This is the functionality of the
Modbus write function.

You must first configure your device before performing write or read operations. For information on
how to configure and connect to your device, see “Configure a Connection in the Modbus Explorer”
on page 18-20. For more information on performing reads, see “Read Coils, Inputs, and Registers in
the Modbus Explorer” on page 18-23.

Use the Write Registers section of the app to perform write operations.

1 Enter the information about the register you want to control in the Write Registers section. You
can do one write at a time using this section of the app.

2 To set up the write, click the Address field and enter the address of the register you want to
write a value to.

3 In the Register Type field, click the down arrow to select the register type of the address. You
can perform a Modbus write operation on two types of targets: coils and holding registers.

4 In the Precision field, click the down arrow to select the precision. This is the data format of the
register being written to on the Modbus server.

5 In the Write Value field, enter the value to write. For coils and inputs, you can only write values
of 0 or 1. For input registers and holding registers you can write other values.

6 Once you have entered all the fields, the Write button becomes activated.

7 To send the value to the register, click Write.
8 If you have the same register listed in the Read Registers table, you see the read value update

when you click Write. In the example shown here, you can see that the value of 30 was sent to
the register and that it is now reflected in the read table for Reg_5 in the first row.

18 Controlling Devices Using Modbus

18-26

See Also

Related Examples
• “Configure a Connection in the Modbus Explorer” on page 18-20
• “Read Coils, Inputs, and Registers in the Modbus Explorer” on page 18-23
• “Control a PLC Using the Modbus Explorer” on page 18-28
• “Generate a Script from Your Modbus Explorer Session” on page 18-33

 Write to Coils and Holding Registers in the Modbus Explorer

18-27

Control a PLC Using the Modbus Explorer
This example shows how to perform read and write operations to a PLC using the Modbus Explorer.
The PLC is a Click Koyo cube with registers that can be used in industrial control and other industrial
applications including controlling switches, timers, and sensors.

1 Open the Modbus Explorer. In the MATLAB Apps tab, under Test & Measurement, select
Modbus Explorer.

2 The device is accessed over Serial RTU. To choose the communication interface in the Modbus
Explorer click Device then Modbus Serial in the toolstrip.

3 On the Configure tab, configure the connection to your device by setting the following Serial
RTU communication parameters in the toolstrip:

Port: Serial port Modbus server is connected to. Set to COM4.
Baud Rate: Bit transmission rate for serial port communication. The default is 9600 bits per
seconds. Change it to 38400.
Parity: Type of parity checking. Valid choices are none (default), even, and odd, and the
actual required value is device-dependent. Set it to odd.
Stop Bits: Number of bits used to indicate the end of data transmission. Valid choices are 1
(default) and 2, and the actual required value is device-dependent. Keep the default.
Data Bits: Number of data bits to transmit. The default is 8, which is the Modbus standard
for Serial RTU. Other valid values are 5, 6, and 7. Keep the default.
Timeout: Maximum time in seconds to wait for a response from the Modbus server. The
default is 3. You can edit the value to increase or decrease the timeout. Keep the default.
Byte Order: Byte order of values written to or read from 16-bit registers. The default is Big
Endian, as specified by the Modbus standard. Keep the default.
Word Order: Word order for register reads and writes that span multiple 16-bit registers.
The default is Big Endian, and it is device-specific. Set it to Little Endian.

4 Configure the reading of data from your device by setting the following read parameters in the
toolstrip:

Server ID: Address of the server to send the read command to, specified as a double. Valid
values are 0-247, with 0 being the broadcast address. Set to 1.
Register Type: Target area to read. You can perform a Modbus read operation on four types
of targets: coils, inputs, input registers, and holding registers. Use the drop-down to select
Coil.
Register Address: Starting address to read from, specified as a double. Enter the number
for your starting address, 16385 in this case.
Precision: Data format of the register being read from on the Modbus server. For coils and
inputs, the precision is always bit. For holding registers and input resisters, you can specify
precisions such as uint16.

The configuration should look like this after you configure the communication and read settings.

5 To test the configuration, click Read. If your configuration parameters are correct, the read is
successful and the Read Value populates with the value from the read operation. If you get an
error, adjust the parameters until the read is successful. In this case, the value should be 0.

18 Controlling Devices Using Modbus

18-28

6 After you have a correct read value, click Confirm Parameters. The Configure tab disappears
and the Modbus Explorer tab appears, and your device is listed in the Device List on the left
side of the app, as shown here.

7 You then use the table to set up more reads from your device. Fill in the Read Registers table to
read data from two timers and three switches. Since the table automatically displays the register
you configure in the Configure tab, the first timer is already listed. Change the name to C1, then
add four more rows so you have these reads set up.

Switches
C1, Address 16385, Coil, bit
C2, Address 16386, Coil, bit
C3, Address 16387, Coil, bit
Timers
T1, Address 45057, Holding Register, uint16
T2, Address 45058, Holding Register, uint16

The table should look like this:

The PLC that contains these timers and switches is shown here.

 Control a PLC Using the Modbus Explorer

18-29

8 To perform the reads on the five registers in the table, click Resume Reads.

The Read Value column displays the value that is returned and the status indicator changes to
LIVE, as shown here.

In this case, the value of 0 means the switch or timer is connected and available, but it is not
activated.

9 To turn on one of the switches, C1, perform a write to the register. In the Write Registers
section, fill in the following:

18 Controlling Devices Using Modbus

18-30

After you have entered all of the fields, the Write button becomes activated.
10 To send the value to the register, click Write.

Since you have the same register listed in the Read Registers table, you see the read value
update when you click Write. In the example shown here, you can see that the value of 1 was
sent to the register and that it is now reflected in the read table for C1, indicating that the switch
is turned on.

11 Perform another write to turn the C3 switch on. In the Write Registers section, fill in the
following:

Address: 16387
Type: Coil
Precision: bit
Write Value: 1

Click Write.

Once that switch is on, the timers turn on, since that is how the PLC board is arranged. T1 is
turned on when the switches are on, and then 5 seconds later T2 is automatically turned on. At
that point both of the timers and two of the switches are turned on, as shown here.

 Control a PLC Using the Modbus Explorer

18-31

See Also

Related Examples
• “Configure a Connection in the Modbus Explorer” on page 18-20
• “Read Coils, Inputs, and Registers in the Modbus Explorer” on page 18-23
• “Write to Coils and Holding Registers in the Modbus Explorer” on page 18-26
• “Generate a Script from Your Modbus Explorer Session” on page 18-33

18 Controlling Devices Using Modbus

18-32

Generate a Script from Your Modbus Explorer Session
You can generate a MATLAB script from your Modbus Explorer session, and then run it at the
command line using the toolbox Modbus functionality. The generated script contains your device
configuration, all the read operations that you perform, the last write operation that you perform for
each register type, and cleanup tasks.

Note that generating a script is not the same as saving the contents of the Read Register table. To
do that, use Export as described in “Read Coils, Inputs, and Registers in the Modbus Explorer” on
page 18-23.

To generate a script from your Modbus Explorer session, click Generate Script in the toolstrip. The
script appears in the MATLAB Editor as a live script. To keep the generated script, save it in the
editor. An example of a script is shown here.

Create Modbus Connection - This section of the generated script creates the modbus object using
the configuration properties specified.

Perform Modbus Reads - This section of the script performs all the Modbus reads that were done in
your session. In this example, five reads were performed.

 Generate a Script from Your Modbus Explorer Session

18-33

Perform Modbus Writes - This section of the script shows the last Modbus write operation that was
done in the session for each register type. It is presented as a comment so that you must intentionally
uncomment it to do the write, to prevent unexpected actions on your device.

Clean Up - This section of the script clears the modbus object and releases the server ID.

18 Controlling Devices Using Modbus

18-34

See Also

Related Examples
• “Configure a Connection in the Modbus Explorer” on page 18-20
• “Read Coils, Inputs, and Registers in the Modbus Explorer” on page 18-23
• “Write to Coils and Holding Registers in the Modbus Explorer” on page 18-26
• “Control a PLC Using the Modbus Explorer” on page 18-28

 Generate a Script from Your Modbus Explorer Session

18-35

Troubleshooting the Modbus Interface
In this section...
“Supported Platforms” on page 18-36
“Configuration and Connection” on page 18-36
“Other Troubleshooting Tips for Modbus” on page 18-37

Industrial Communication Toolbox supports the Modbus interface over TCP/IP or Serial RTU. You can
use it to communicate with Modbus servers, such as controlling a PLC (Programmable Logic
Controller), communicating with a temperature controller, controlling a stepper motor, sending data
to a DSP, reading bulk memory from a PAC controller, or monitoring temperature and humidly on a
Modbus probe.

Using the Modbus interface, you can do the following tasks:

• Read coils, inputs, input registers, and holding registers
• Write to coils and holding registers
• Perform a combination of one write operation and one read operation on groups of holding

registers in a single Modbus transaction
• Modify the contents of a holding register using a mask write operation

Supported Platforms
Industrial Communication Toolbox supports the Modbus interface over TCP/IP or Serial RTU. It is
supported on the following platforms.

• Linux 64-bit
• Mac OS 64-bit
• Microsoft Windows 64-bit

Configuration and Connection
1 If you are connecting to a local or remote device over Modbus, make sure that the device is

powered on and available.
2 Industrial Communication Toolbox can communicate over Modbus using TCP/IP or Serial RTU. If

you are connecting via TCP/IP, you need to know the IP address or host name of the Modbus
server. If you are connecting via Serial RTU, you need to specify the Serial port the Modbus
server is connected to.

3 Make sure you can create the modbus object with its necessary arguments. For examples of
creating the object and information about the required arguments, see “Create a Modbus
Connection” on page 18-3.

When you create the modbus object, it connects you to the server or device. There is no separate
connection function required.

4 When you have connected, you can communicate with your device. See “Read Temperature from
a Remote Temperature Sensor” on page 18-13 for an example of communicating with a device.
See “Other Troubleshooting Tips for Modbus” on page 18-37 for tips about communication
issues after initial connection.

18 Controlling Devices Using Modbus

18-36

Other Troubleshooting Tips for Modbus
These tips may be relevant to your use of the Modbus interface.

Address Range

When specifying read and write addresses, the addresses must be in the range 0–65535.

Underlying Interface

You might encounter connection problems that are due to the underlying TCP/IP or Serial Port
connections, rather than being specific to the Modbus interface.

Modbus Addresses

If you have trouble figuring out a Modbus address, see the vendor documentation of the device. For
example, you may need to map a PLC register to the Modbus address for the register. The vendor
documentation may help.

Some vendors include an extra digit in addresses that gets dropped. For example 43233 is really
address 3233. Devices are usually represented by a four-digit address, and some vendors use a 5th
digit to represent the type of target, for example, coils. So you may need to adjust an address to
account for this if your device vendor does that.

The Modbus functions use 1-based addressing, not 0-based addressing like Modbus uses. The toolbox
subtracts 1 from any addresses that are passed in via the address parameters in the read and write
functions.

 Troubleshooting the Modbus Interface

18-37

OPC Information Reference

39

OPC Quality

A

OPC Quality
Industrial Communication Toolbox software uses specific quality attributes defined by the OPC
Foundation, based on a major quality value, a substatus for that major quality value, and a limit status
indicating how the value is limited. This appendix describes the standard quality attributes defined by
the OPC Foundation that are used in the toolbox, and describes any special extensions that the
toolbox uses.

An OPC quality value is a number ranging from 0 to 65535, made up of four parts. The high 8 bits of
the quality value represent the vendor-specific quality information. The low 8 bits are arranged as
QQSSSSLL, where QQ represents the major quality, SSSS represents the quality substatus, and LL
represents the limit status.

OPC HDA quality values are layered on top of OPC DA quality values.

The following topics describe the OPC quality values and texts associated with each quality part.

• “Major Quality” on page A-3
• “Quality Substatus” on page A-4
• “Limit Status” on page A-6

For more information, see the Quality property reference page. The quality of an item is also stored in
native value format in the QualityID property of the daitem object.

A OPC Quality

A-2

Major Quality
Industrial Communication Toolbox uses the following major quality values and text. The major quality
is contained in bits 7 and 8 of the quality value.

Major Quality Values

Value Quality Text Description
0 Bad The value is not useful for the reason indicated by the substatus. The

table Bad Quality Substatus Values contains information about the
substatus for bad quality.

1 Uncertain The quality of the value is uncertain for reasons indicated by the
substatus. The table Uncertain Quality Substatus Values contains
information about the substatus for uncertain quality.

3 Good The quality of the value is good. The table Good Quality Substatus
Values contains information about the substatus for good quality.

N/A Repeat The value is repeated from a previous known value for this item. This
toolbox-specific value occurs only in data returned from getdata or
opcread, when you request array formatted values.

See Also

More About
• “OPC Quality” on page A-2
• “Quality Substatus” on page A-4
• “Limit Status” on page A-6

 Major Quality

A-3

Quality Substatus
Each major quality status has an additional substatus that describes the quality of the value in more
detail. The following tables describe the quality substatus for each major quality.

• Good Quality Substatus Values
• Uncertain Quality Substatus Values
• Bad Quality Substatus Values

Good Quality Substatus Values

Value Substatus Text Description
0 Non-specific The value is good. There are no special

conditions.
6 Local Override The value has been overridden. Typically, this

means that the device has been disconnected
from the OPC server (either physically, or
through software) and a manually entered value
has been forced.

Uncertain Quality Substatus Values

Value Substatus Text Description
0 Non-Specific The server has not published a specific reason

why the value is uncertain.
1 Last Usable Value Whatever was writing the data value has

stopped doing so. The returned value should be
regarded as "stale." Note that this quality value
differs from 'Bad: Last Known Value' in
that the "bad" quality is associated specifically
with a detectable communications error. The
'Uncertain: Last Usable Value' text is
associated with the failure of some external
source to "put" something into the value within
an acceptable period of time. You can examine
the age of the value using the TimeStamp
property associated with this quality.

4 Sensor Not Accurate Either the value has pegged at one of the sensor
limits, or the sensor is otherwise known to be
out of calibration via some form of internal
diagnostics.

5 Engineering Units
Exceeded

The returned value is outside the limits defined
for this value. Note that this substatus does not
imply that the value is pegged at some upper
limit. The value may exceed the engineering
units even further in future updates.

6 Sub-Normal The value is derived from multiple sources and
has less than the required number of good
sources.

A Quality Substatus

A-4

Bad Quality Substatus Values

Value Substatus Text Description
0 Non-Specific The value is bad but no specific reason is known.
1 Configuration Error There is some server-specific problem with the

configuration. For example, the item in question
is deleted from the running server configuration.

2 Not Connected The input is required to be logically connected to
something, but is not connected. This quality may
reflect that no value is available at this time,
possibly because the data source has not yet
provided one.

3 Device Failure A device failure has been detected.
4 Sensor Failure A sensor failure has been detected.
5 Last Known Value Communication between the device and the

server has failed. However, the last known value
is available. Note that the age of the last known
value can be determined from the TimeStamp
property.

6 Comm Failure Communication between the device and server
has failed. There is no last known value available.

7 Out of Service The Active state of the item or group containing
the item is set to off. This quality is also used to
indicate that the item is not being updated by the
server for some reason.

See Also

More About
• “OPC Quality” on page A-2
• “Major Quality” on page A-3
• “Limit Status” on page A-6

 Quality Substatus

A-5

Limit Status
The limit status is not dependent on the major quality and substatus parts of a quality value.

The following table lists the limit status values and texts used in Industrial Communication Toolbox.

Value Limit Status Text Description
0 Not Limited The value is free to move. Note that when the

limit status has this value, it is omitted from any
quality attribute in the toolbox.

1 Low Limited The value is fixed at some lower limit.
2 High Limited The value is fixed at some upper limit.
3 Constant The value is a constant and cannot change.

See Also

More About
• “OPC Quality” on page A-2
• “Major Quality” on page A-3
• “Quality Substatus” on page A-4

A Limit Status

A-6

OPC DA Server Item Properties

B

OPC DA Server Item Properties
All server items defined in an OPC server name space have associated properties that describe that
server item in more detail. The properties defined by the OPC Foundation are described in these
topics:

• “OPC Item Property Set” on page B-3
• “OPC Specific Properties” on page B-4
• “OPC Recommended Properties” on page B-5

For more information on querying OPC server item properties, consult the help for
serveritemprops.

B OPC DA Server Item Properties

B-2

OPC Item Property Set
Every item defined by an OPC server has specific attributes, or properties, that describe that server
item in more detail. These properties include the current Value, Quality and TimeStamp for the server
item, plus additional properties that a server may require in order to determine the quality of a value,
or to decide whether to generate a DataChange event for groups that have a nonzero
DeadbandPercent value. Exposure of the server item properties to a client is intended to provide a
client with more information on a specific item, and is not intended to provide efficient access to
large amounts of data. Rather, you should use the read function to read data from a large number of
server items.

Each property is identified by a Property ID, or PropID, which is an integer value. The OPC Data
Access Specification defines three sets of these properties, based on their PropID.

OPC Item Property Sets

Set Name ID Range Description
OPC Specific 1-99 Information directly related to the OPC server for that

item.
OPC Recommended 100-4999 Additional information which is commonly associated

with items, such as ranges of valid values, alarm limits,
etc.

Vendor Specific 5000 or greater Specific properties defined by an OPC server vendor.
Since these vary from vendor to vendor, the actual
descriptions are not presented in this appendix.

Each of the property sets defined by the OPC Foundation is presented in the following sections.

Note OPC servers must implement the OPC specific properties. However, the recommended
properties are not mandatory, and an OPC server could provide any subset of the recommended
properties, or none of them.

See Also

More About
• “OPC DA Server Item Properties” on page B-2
• “OPC Specific Properties” on page B-4
• “OPC Recommended Properties” on page B-5

 OPC Item Property Set

B-3

OPC Specific Properties
OPC Specific Properties

PropID Description
1 “Item Canonical DataType”

The data type of the item as stored on the OPC server. This property is also
exposed in the CanonicalDataType property of the daitem object.

2 “Item Value”
The value that was last obtained from the OPC server for the item. This
property is the same as the Value property of the daitem object. Querying
this property behaves like a read operation from the device.

3 “Item Quality”
The quality of the item's Value property. This property is the same as the
Quality property of the daitem object. Querying this property behaves like
a read operation from the device.

4 “Item Timestamp”
The time that the Value and Quality was obtained by the device (if this is
available) or the time the server updated or validated the Value and
Quality in its cache. This property is the same as the TimeStamp property
of the daitem object. Querying this property behaves like a read operation
from the device.

5 “Item Access Rights”
The ability of the server to read or write data to this item.

6 “Server Scan Rate”
Represents the fastest rate at which the server could obtain data from the
underlying data source. The accuracy of this value could be affected by
system load and other factors, and is not a guaranteed rate.

7-99 Reserved for future use

See Also

More About
• “OPC DA Server Item Properties” on page B-2
• “OPC Item Property Set” on page B-3
• “OPC Recommended Properties” on page B-5

B OPC Specific Properties

B-4

OPC Recommended Properties
The Recommended Properties are divided into the following tables.

• Recommended Properties Related to the Item Value
• Recommended Properties Related to Operator Displays
• Recommended Properties Related to Alarm and Condition Values

Recommended Properties Related to the Item Value

PropID Description
100 “EU Units”

The engineering units for this item.
101 “Item Description”

A description of the item.
102 “High EU”

Present only for analog data. Represents the highest value likely to be
obtained in normal operation. Also used by servers that support non-zero
DeadbandPercent values for a group.

103 “Low EU”
Present only for analog data. Represents the lowest value likely to be
obtained in normal operation. Also used by servers that support non-zero
DeadbandPercent values for a group.

104 “High Instrument Range”
Represents the highest value that can be returned by the instrument.

105 “Low Instrument Range”
Represents the highest value that can be returned by the instrument.

106 “Contact Close Label”
Present only for discrete data. Represents text to be associated with this
contact when it is in the closed (non-zero) state.

107 “Contact Open Label”
Present only for discrete data. Represents text to be associated with this
contact when it is in the open (zero) state.

108 “Item Timezone”
The difference in minutes between the item’s UTC Timestamp and the local
time in which the item value was obtained. Industrial Communication
Toolbox software does not use this property to adjust time stamps for an
item.

109-199 Reserved for future use.

 OPC Recommended Properties

B-5

Recommended Properties Related to Operator Displays

PropID Description
200 “Default Display”

The name of an operator display associated with this item.
201 “Current Foreground Color”

The COLORREF in which the item should be displayed.
202 “Current Background Color”

The COLORREF in which the item should be displayed.
203 “Current Blink”

Defines whether a display of this item should blink.
204 “BMP File”

Bitmap file associated with this item.
205 “Sound File”

.WAV or .MID file associated with this item.
206 “HTML File”

URL reference for this item.
207 “AVI File”

Video file associated with this item.
208-299 Reserved for future OPC use.

B OPC Recommended Properties

B-6

Recommended Properties Related to Alarm and Condition Values

PropID Description
300 “Condition Status”

The current alarm condition status associated with the item.
301 “Alarm Quick Help“

A short text providing a brief set of instructions for the operator to follow
when this alarm occurs.

302 “Alarm Area List”
An array of texts indicating the plant or alarm areas which include this item.

303 “Primary Alarm Area”
A text indicating the primary plant or alarm area including this item.

304 “Condition Logic”
An arbitrary test describing the test being performed.

305 “Limit Exceeded”
For multistate alarms, the condition exceeded.

306 “Deadband”
307 “HiHi Limit”
308 “Hi Limit”
309 “Lo Limit”
310 “LoLo Limit”
311 “Rate of Change Limit”
312 “Deviation Limit”
313-4999 Reserved for future OPC use.

See Also

More About
• “OPC DA Server Item Properties” on page B-2
• “OPC Item Property Set” on page B-3
• “OPC Specific Properties” on page B-4

 OPC Recommended Properties

B-7

OPC HDA Item Attributes

C

OPC HDA Item Attributes
• Data Type — Specifies the data type for an item. See the definition of a particular Variant for valid

values.

Comparison of MATLAB and COM Variant Data Types

MATLAB Data Type OPC Server Data Type (COM Variant Type)
double VT_R8
single VT_R4
char VT_BSTR
logical VT_BOOL
uint8 VT_UI1
uint16 VT_UI2
uint32 VT_UI4
uint64 VT_UI8
int8 VT_I1
int16 VT_I2
int32 VT_I4
int64 VT_I8
cell N/A
struct N/A
object N/A
N/A VT_DISPATCH
N/A VT_BYREF
double VT_EMPTY

• Description — Describes the item.
• Eng Units — Specifies the label to use in displays to define the units for the item (e.g., kg/sec).
• Stepped — Specifies whether data from the history repository should be displayed as interpolated

(sloped lines between points) or stepped (vertically-connected horizontal lines between points)
data. Value of 0 indicates interpolated.

• Archiving — Indicates whether historian is recording data for this item (0 means no).
• Derive Equation — Specifies the equation to be used by a derived item to calculate its value. This

is free-form text.
• Node Name — Specifies the machine which is the source for the item. This is intended to be the

broadest category for defining sources. For an OPC Data Access Server source, this is the node
name or IP address of the server. For non-OPC sources, the meaning of this field is server-specific.

• Process Name — Specifies the process which is the source for the item. This is intended to the
second-broadest category for defining sources. For an OPC DA server, this would be the registered
server name. For non-OPC sources, the meaning of this field is server-specific.

• Source Name — Specifies the name of the item on the source. For an OPC DA server, this is the
ItemID. For non-OPC sources, the meaning of this field is server-specific.

C OPC HDA Item Attributes

C-2

• Source Type — Specifies what sort of source produces the data for the item. For an OPC DA
server, this would be "OPC". For non-OPC sources, the meaning of this field is server-specific.

• Normal Maximum — Specifies the upper limit for the normal value range for the item. It is used
for trend display default scaling and exception deviation limit calculations.

• Normal Minimum — Specifies the lower limit for the normal value range for the item. It is used
for trend display default scaling and exception deviation limit calculations.

• ItemID — Specifies the item ID.
• Max Time Interval — Specifies the maximum interval between data points in the history

repository regardless of their value change. A new value shall be stored in history whenever the
specified number of seconds have passed since the last value stored for the item.

• Min Time Interval — Specifies the minimum interval between data points in the history
repository regardless of their value change. A new value shall not be stored in history unless the
specified number of seconds have passed since the last value stored for the item.

• Exception Deviation — Specifies the minimum amount that the data for the item must change in
order for the change to be reported to the history database.

• Exception Dev Type — Specifies whether the exception deviation is given as an absolute value,
percent of span, or percent of value. The span is defined as High Entry Limit – Low Entry Limit.

• High Entry Limit — Specifies the highest valid value for the item. A value for the item that is
above this limit cannot be entered into history. This is the top of the span.

• Low Entry Limit — Specifies the lowest valid value for the item. A value for the item that is below
this limit cannot be entered into history. This is the zero for the span. What follows is a list
describing the OPC specified attributes which may be supported by the server.

See Also
Functions
readItemAttributes

More About
• “Read Item Attributes” on page 13-9

 OPC HDA Item Attributes

C-3

Functions

19

addgroup
Add data access group to opcda object

Syntax
GrpObj = addgroup(DAObj)
GrpObj = addgroup(DAObj,GName)
GrpObj = addgroup(DAObj,GName,GrpType)

Description
GrpObj = addgroup(DAObj) adds a group to the opcda object DAObj. A group is a container for a
client to organize and manipulate data items. Typically, you create different groups to support
different update rates, activation status, callbacks, etc.

If DAObj is already connected to the server when addgroup is called, a group name is requested
from the server. If the server does not supply a group name, or the object is not connected to a server,
a unique name is automatically assigned to GrpObj. The unique name follows the convention
'groupN' where N is an integer. You can change this name by modifying the group's Name property.

GrpObj = addgroup(DAObj,GName) adds a group to the OPC data access object DAObj with the
group name given by GName. The group name must be unique among other group names within
DAObj.

GrpObj = addgroup(DAObj,GName,GrpType) adds a group to the opcda object DAObj with the
group type specified by GrpType, either 'private' or 'public'.

You can add items to GrpObj using the additem function, if the group type is 'private'. For a
public group, the items are already defined, and are automatically created when you connect to the
public group using addgroup.

Examples

Create an OPC DA Client and Add Groups

Create an OPC DA client and add groups to it.

Create an opcda client.

da = opcda('localhost','Matrikon.OPC.Simulation');

Create a group using a default group name.

grp1 = addgroup(da);

Add another group, providing its name.

19 Functions

19-2

grp2 = addgroup(da,'AddgroupEx');

Input Arguments
DAObj — OPC DA client
OPC DA client object

OPC DA client , specified as an OPC DA client object. You create the client object with the opcda
function.
Example: DAObj = opcda()

GName — Group name
char | string

Group name, specified as a character vector or string. The group name must be unique within the
OPC DA client object.
Example: 'group1'
Data Types: char | string

GrpType — Group type
'private' (default) | 'public'

Group type, specified as 'private' or 'public'. If GrpType is 'private' (the default), the group
is configured to be private to DAObj, and no other client connected to the OPC server can access that
group. If GrpType is 'public', a connection is made to the server’s public group named GName. To
make a connection to a public group named GName, that group must exist on the server as a public
group. You create public groups on the server using the makepublic function. Note that some
servers do not support public groups; you can verify whether a server supports public groups by
using opcserverinfo(DAObj) and checking the SupportedInterfaces field for the
IOPCServerPublicGroups interface.
Example: 'public'
Data Types: char | string

Output Arguments
GrpObj — Data access group
dagroup object

Data access group, returned as a dagroup object, with properties described in dagroup Object
Properies Properties.

By default, GrpObj has its Active property set to 'on', GroupType set to 'private', and the
Subscription property set to 'on'.

Version History
Introduced before R2006a

 addgroup

19-3

See Also
Functions
additem | opcda | opcserverinfo

Properties
dagroup Object Properies Properties

19 Functions

19-4

additem
Add data access items to dagroup object

Syntax
IObj = additem(GObj,'IName')
IObj = additem(GObj,'IName','DataType')
IObj = additem (GObj,'IName','DataType','Active')

Description
IObj = additem(GObj,'IName') adds items to the group object GObj with fully qualified item IDs
given by IName. The object IObj is the created item object or objects, with properties described in
daitem Object Properties Properties. You specify IName as a single item ID or as a cell array of item
IDs.

The daitem object provides a connection to a data variable in the physical device and returns
information about the data variable, such as its value, quality, and time stamp. Note that you cannot
add a given item to the same group more than once. However, you can add the same item to different
groups.

By default, IObj is active; that is, if the group’s Subscription property is on, the item's Value, Quality,
and TimeStamp properties will be updated at the group's UpdateRate.

Servers often require item IDs to be specified in the correct case. You can use the serveritems
function to find valid item IDs.

Note You cannot add items to a public group. A public group has a fixed set of item IDs common to
all clients sharing that group. The GroupType property of a dagroup object indicates the type of
group.

IObj = additem(GObj,'IName','DataType') adds items to the group object GObj with the
requested data type given by 'DataType'. You specify 'DataType' as a cell array of character
vectors, one for each item ID. 'DataType' is the data type in which the item's value is stored in the
MATLAB workspace. The supported data types are 'logical', 'int8', 'uint8', 'int16',
'uint16', 'int32', 'uint32', 'single', 'double', 'char', and 'date'. Note that if the
requested data type is rejected by the server, the item is not added. The requested data type is stored
in the DataType property. The canonical data type (the data type used by the server to store the item
value) is stored in the CanonicalDataType property.

IObj = additem (GObj,'IName','DataType','Active') adds items to the group object GObj
with active status given by 'Active'. You specify 'Active' as a cell array of character vectors, one
for each item ID. 'Active' can be 'on' or 'off'. The active status is stored in the Active
property.

Examples

 additem

19-5

Add Items to a Group

Add items with different attributes to a group.

Create a client and a group.

da = opcda('localhost','Matrikon.OPC.Simulation');
connect(da);
grp = addgroup(da,'ExAddItem');

Add two items with their canonical data types.

itm = additem(grp, {'Random.Real4','Random.Real8'});

Add an item with a 'double' data type.

itmDbl = additem(grp,'Random.Int2','double');

Add an inactive item.

itmInact = additem(grp,'Random.UInt4','double','off');

Version History
Introduced before R2006a

See Also
Functions
getnamespace | serveritems

Properties
daitem Object Properties Properties

19 Functions

19-6

arrayHasSameTimeStamp
Class: opc.hda.Data
Package: opc.hda

True if all elements of OPC HDA data object have same time stamp vector

Syntax
tf = arrayHasSameTimeStamp(dObj)

Description
tf = arrayHasSameTimeStamp(dObj) returns true if all the elements of dObj have the same time
stamp.

Use tsunion to ensure that the time stamps of an OPC HDA data object are the same.

Examples
Load the OPC HDA example data file and see if the hdaDataSmall object has the same time stamps
in all elements:

load opcSampleHdaData;
tf = arrayHasSameTimeStamp(hdaDataSmall);

Form a new data set using tsunion, and check the time stamps again:

hdaUnion = tsunion(hdaDataSmall);
tfU = arrayHasSameTimeStamp(hdaUnion)

See Also
tsunion

 arrayHasSameTimeStamp

19-7

browsenamespace
Graphically browse OPC DA server name space

Syntax
ItmList = browsenamespace(DaObj)
ItmList = browsenamespace(DaObj,ItmListInit)
ItmList = browsenamespace(DaObj,ItmListInit,true)

Description
ItmList = browsenamespace(DaObj) opens a graphical name space browser for the OPC Data
Access Client object DaObj. The graphical interface lets you construct a list of items and return a list
of those fully qualified item IDs to ItmList. You can use ItmList to add items to a Group object
using additem. The name space is retrieved from the server incrementally, as needed.

ItmList = browsenamespace(DaObj,ItmListInit) lets you specify an initial list of item IDs to
augment.

ItmList = browsenamespace(DaObj,ItmListInit,true) loads the entire name space into the
dialog box.

Examples

Browse Local Matrikon Server for OPC DA Items

Connect to the local Matrikon Simulation server and browse for items.

DaObj = opcda('localhost','Matrikon.OPC.Simulation');
connect(DaObj);
ItmList = browsenamespace(DaObj);

Input Arguments
DaObj — OPC DA client
OPC DA client object

OPC DA client, specified as an OPC DA client object.

ItmListInit — Initial list of OPC DA items
character vector, string, or cell array

Initial list of OPC DA items, specified as a character vector, string, or cell array that identifies the
item IDs. When the browser opens, these items are already included in the selected list.
Data Types: char | string | cell

true — Indicator to load entire name space
true

19 Functions

19-8

Indicator to load the entire name space, specified as true. Use this option only if your server does
not support partial name space browsing.
Data Types: logical

Output Arguments
ItmList — List of OPC DA item IDs
char vector or cell array of char vectors

List of OPC DA item IDs, returned as a character vector or cell array of character vectors. Each
character vector indicates a selected OPC DA item ID.

Version History
Introduced in R2013a

See Also
getnamespace | addgroup | additem

 browsenamespace

19-9

browseNameSpace
Package: opc.hda

Graphically browse OPC HDA server name space

Syntax
ItmList = browseNameSpace(HdaObj)
ItmList = browseNameSpace(HdaObj,ItmListInit)
ItmList = browseNameSpace(HdaObj,ItmListInit,true)

Description
ItmList = browseNameSpace(HdaObj) opens a graphical name space browser for the OPC HDA
client object HdaObj. Use the graphical interface to construct a list of items and return a list of those
fully qualified item IDs in ItmList. Use ItmList to retrieve data for those items with function
readRaw, readProcessed, readAtTime, or readModified.

The name space is retrieved from the server incrementally, as needed.

ItmList = browseNameSpace(HdaObj,ItmListInit) lets you specify an initial list of item IDs
to be augmented.

ItmList = browseNameSpace(HdaObj,ItmListInit,true) loads the entire name space into
the dialog.

Examples

Browse Local Matrikon Server for OPC HDA Items

Connect to the local Matrikon Simulation server and browse for items.

HdaObj = opchda('localhost','Matrikon.OPC.Simulation');
connect(HdaObj);
ItmList = browseNameSpace(HdaObj);

Input Arguments
HdaObj — OPC HDA client
OPC HDA client object

OPC HDA client, specified as an OPC HDA client object.

ItmListInit — Initial list of OPC HDA items
character vector, string, or cell array of character vectors

Initial list of OPC HDA items, specified as a character vector, string, or cell array that identifies the
item IDs. When the browser opens, these items are already included in the selected list.

19 Functions

19-10

Data Types: char | string | cell

true — Indicator to load entire name space
true

Indicator to load the entire name space, specified as true. Use this option only if your server does
not support partial name space browsing.
Data Types: logical

Output Arguments
ItmList — List of OPC HDA item IDs
char vector or cell array of char vectors

List of OPC HDA item IDs, returned as a character vector or cell array of character vectors. Each
character vector indicates a selected OPC HDA item ID.

Version History
Introduced in R2013a

See Also
Functions
getNameSpace (opchda) | readRaw | readProcessed | readAtTime | readModified

 browseNameSpace

19-11

browseNamespace
Package: opc.ua

Graphically browse name space and select nodes from OPC UA server

Syntax
NodeList = browseNamespace(UaClient)
NodeList = browseNamespace(UaClient,Nodes)

Description
NodeList = browseNamespace(UaClient) opens the Browse Name Space dialog box for OPC UA
client object UaClient. Using this browser, you can construct a list of nodes, and return an array of
those nodes in NodeList. You can use NodeList to retrieve data for those items using read,
readHistory, readProcessed, readAtTime, or readModified.

The name space is retrieved from the server incrementally. UaClient must be connected when you
call this function.

NodeList = browseNamespace(UaClient,Nodes) allows you to specify an initial list of Nodes to
be supplemented. If you cancel the browsing by pressing the Cancel button, then NodeList will be
empty.

Examples

Create Initial List of Nodes

This example shows how to create a list of nodes from the OPC UA name space. After selecting the
nodes you want in the dialog box, click OK.

s = opcuaserverinfo('localhost');
UaClient = opcua(s);
connect(UaClient);
NodeList1 = browseNamespace(UaClient)

Supplement List of Nodes

This example shows how to add to a list of nodes from the OPC UA name space. The Browse Name
Space dialog box opens with the nodes of NodeList1 already selected.

s = opcuaserverinfo('localhost');
UaClient = opcua(s);
connect(UaClient);
NodeList1 = browseNamespace(UaClient)

19 Functions

19-12

% Some time later
NodeList2 = browseNamespace(UaClient,NodeList1)

Input Arguments
UaClient — OPC UA client
OPC UA client object

OPC UA client specified as an OPC UA client object

Nodes — List of nodes
array of node objects

List of nodes returned as an array of node objects. For information on node object functions and
properties, type

help opc.ua.Node

Output Arguments
NodeList — List of nodes
array of node objects

List of nodes returned as an array of node objects. For information on node object functions and
properties, type

help opc.ua.Node

Version History
Introduced in R2015b

See Also
Functions
getNamespace | readValue | readHistory | readProcessed | readAtTime | writeValue

 browseNamespace

19-13

cancelasync
Cancel asynchronous read and write operations

Syntax
cancelasync(GObj)
cancelasync(GObj,TransID)

Description
cancelasync(GObj) cancels all asynchronous read and write operations that are in progress for the
group object specified by GObj. This function is asynchronous and does not block the MATLAB
command line.

After cancelasync cancels the in-progress asynchronous operations, the OPC server generates a
cancel async event. If you specify a callback function file for the CancelAsyncFcn property, the
callback function executes when this event occurs.

cancelasync(GObj,TransID) cancels the asynchronous operations, specified by the transaction
IDs given by TransID. You can cancel specific asynchronous requests using this syntax.

Examples

Cancel Asynchronous Read Operation

Start an asynchronous read and then cancel it.

Create a connected client, group, and items.

da = opcda('localhost','Matrikon.OPC.Simulation');
connect(da);
grp = addgroup(da,'CancelAsyncEx');
additem(grp, {'Random.Real8','Random.Real4'});

Request an asynchronous read operation and then immediately cancel that request.

tid = readasync(grp); cancelasync(grp,tid);

Version History
Introduced before R2006a

See Also
Functions
readasync | writeasync

19 Functions

19-14

cleareventlog
Clear event log, discarding all events

Syntax
cleareventlog(DAObj)

Description
cleareventlog(DAObj) clears the event log for opcda object DAObj. DAObj can be an array of
objects. cleareventlog also discards any events stored in the EventLog property of the objects.

Examples
Create a connected client and configure a group with two items:

da = opcda('localhost','Matrikon.OPC.Simulation');
connect(da);
grp = addgroup(da,'ClearEventLogEx');
itm1 = additem(grp,'Random.Real8');
itm2 = additem(grp,'Triangle Waves.UInt1');

Run a 10-second logging task, and after 5 seconds perform an asynchronous read of the group:

grp.UpdateRate = 1;
grp.RecordsToAcquire = 10;
start(grp);
pause(5);
tid = readasync(grp);
wait(grp);

Examine the event log size:

el = da.EventLog

Clear the event log:

cleareventlog(da)
el2 = da.EventLog

Version History
Introduced before R2006a

 cleareventlog

19-15

clonegroup
Clone group into new private group on same client

Syntax
NewGObj = clonegroup(GObj,'NewName')

Description
NewGObj = clonegroup(GObj,'NewName') clones the dagroup object specified by GObj, making
a private group NewGObj with name NewName. NewName must be a unique group name. GObj can be
a private group or a public group.

The new group NewGObj is independent of the original group, but with the same parent (opcda
object) and the same items as that group. All the group and item properties are duplicated with the
exception of the following:

• The Active property is configured to 'off'.
• The GroupType property is configured to 'private'.

Not all OPC data access servers support the cloning of groups. To use this functionality, your server
must support public groups. If you try to clone a group on a server that does not support public
groups, an error is generated. To verify that a server supports public groups, use the
opcserverinfo function on the client connected to that server: Look for an entry
'IOPCPublicGroups' in the 'SupportedInterfaces' field.

You use clonegroup primarily when you want to create a private duplicate of a public group that
you can then modify. If you want to create a copy of a group in another client, use the copyobj
function.

Examples
Create a fictitious client, and configure a group with two items. Do not connect to the server.

da = opcda('localhost','Dummy.Server');
grp1 = addgroup(da,'OriginalGroup');
itm1 = additem(grp1,'Device1.Item1');
itm2 = additem(grp1,'Device1.Item2');

Clone the group.

grp2 = clonegroup(grp1,'ClonedGroup');

Version History
Introduced before R2006a

19 Functions

19-16

See Also
Functions
copyobj | makepublic

 clonegroup

19-17

connect
Package:

Connect client object to OPC server

Syntax
connect(Obj)

Description
connect(Obj) connects the opcda or opchda object Obj to the OPC server that specified by the
object Host and ServerID properties. When you connect Obj, its Status property takes the value
'connected'. You can disconnect Obj from the server with the disconnect function, which sets
the Status property value to 'disconnected'.

If Obj is an array of objects and the function cannot connect some of these objects, it generates a
warning. If the function cannot connect any of the objects, it generates an error.

It is possible to create opcda groups and items before connecting to the server. However, servers
impose restrictions on client group and item names. Therefore, if you create a group hierarchy and
then connect to the server, connect automatically deletes groups or items that the server cannot
support, and issues a warning message.

Examples

Connect OPC DA Client to Sever

Create a Data Access client and connect to the server.

da = opcda('localhost','Matrikon.OPC.Simulation');
connect(da);

Connect OPC HDA Client to Server

Create an HDA client for the Matrikon Simulation Server and connect to the server.

hdaObj = opchda('localhost','Matrikon.OPC.Simulation');
connect(hdaObj);

Input Arguments
Obj — OPC client object
opcda object | opchda object

OPC client object, specified as an opcda object, opchda object, or an array of objects.
Example: opchda()

19 Functions

19-18

Version History
Introduced before R2006a

See Also
Functions
disconnect | isConnected

 connect

19-19

connect
Package: opc.ua

Connect OPC UA client to server

Syntax
connect(UaClient)
connect(UaClient, UserName, Password)
connect(UaClient,PublicKeyFilename,PrivateKeyFileName,PrivateKeyPassword)

Description
connect(UaClient) connects the OPC UA client UaClient to its referenced server using
anonymous user authentication.

connect(UaClient, UserName, Password) connects the OPC UA Client UaClient to its server
using username and password authentication. The UserName and Password arguments must be
provided, although the Password field can be empty.

connect(UaClient,PublicKeyFilename,PrivateKeyFileName,PrivateKeyPassword)
connects the OPC UA Client UaClient to its server using the User Certificate stored in the public
and private key files referenced by PublicKeyFilename and PrivateKeyFilename.
PrivateKeyPassword is the password used to protect the Private Key File. Private Key Files for
OPC must be password protected. The files must be in .DER format.

When the client successfully connects to the server, the client object Status property is set to
'Connected', the first level of the server namespace is retrieved, and various essential properties of
the client are read from the server.

If UaClient is a vector of clients, and some but not all clients can connect, a warning is issued. If no
clients can connect, an error is generated. You can only connect a vector of clients using the same
username and password, or the same certificate parameters. If you need to use different usernames
and passwords for different servers, call connect on each of the clients individually.

Examples

Connect OPC UA Client to Server

Locate an OPC UA server and connect a client to it.

s = opcuaserverinfo('localhost');
UaClient = opcua(s(1));
connect(UaClient);

Check the connection status.

19 Functions

19-20

isConnected(UaClient)

Input Arguments
UaClient — OPC UA client
OPC UA client object

OPC UA client, specified as an OPC UA client object or array of objects.
Example: opcua()

Version History
Introduced in R2015b

See Also
Functions
disconnnect | isConnected | opcua

 connect

19-21

copyobj
Make copy of OPC data access object

Syntax
NewObj = copyobj(Obj)
NewObj = copyobj(Obj, ParentObj)

Description
NewObj = copyobj(Obj) makes a copy of all the objects in Obj, and returns them in NewObj. Obj
can be a scalar OPC object, or a vector of toolbox objects.

NewObj = copyobj(Obj, ParentObj) makes a copy of the objects in Obj inside the parent object
ParentObj. ParentObj must be a valid scalar parent object for Obj. If any objects in Obj cannot be
created in ParentObj, a warning will be generated.

A copied toolbox object contains new versions of all children, their children, and any parents that are
required to construct that object. A copied object is different from its parent object in the following
ways:

• The values of read-only properties will not be copied to the new object. For example, if an object is
saved with a Status property value of 'connected', the object will be recreated with a Status
property value of 'disconnected' (the default value). You can use propinfo to determine if a
property is read-only. Specifically, a connected opcda object is copied in the disconnected state,
and a copy of a logging dagroup object is not reset to the logging state.

• A copied dagroup object that has records in memory from a logging session is copied without
those records.

OPC HDA objects do not support copyobj.

Examples
Create a connected Data Access client with a group containing an item:

da1 = opcda('localhost', 'Matrikon.OPC.Simulation');
connect(da1);
grp1 = addgroup(da1, 'CopyobjEx');
itm1 = additem(grp1, 'Random.Real8');

Copy the client object. This also copies the group and item objects.

da2 = copyobj(da1);
grp2 = da2.Group

Change the first group name, and note that the second group name is unchanged:

grp1.Name = 'NewGroupName';
grp2.Name

19 Functions

19-22

Version History
Introduced before R2006a

See Also
obj2mfile | propinfo

 copyobj

19-23

delete
Package:

Remove OPC objects from memory

Syntax
delete(Obj)

Description
delete(Obj) removes the OPC object Obj from memory. Obj can be an array of objects. A deleted
object becomes invalid and you cannot reconnect it to the server after it has been deleted, so you
should remove references to that object from the workspace with the clear command. Deleting an
object that contains children (groups or items) also deletes these children, so you should remove
references to these children.

If multiple references to a toolbox object exist in the workspace, then deleting one object invalidates
the remaining references.

If Obj is an opcda object connected to the server, delete disconnects and deletes the object.

Examples
Create an OPC HDA Client, delete the object, and clear the variable from the workspace:

hdaObj = opchda('localhost', 'Matrikon.OPC.Simulation');
delete(hdaObj);
clear hdaObj

Delete a group and its children from memory:

da = opcda('localhost','Matrikon.OPC.Simulation');
connect(da);
grp = addgroup(da,'DeleteEx');
itm = additem(grp,'Random.Real4');
r = read(grp)
delete(grp); % deletes itm as well
clear grp itm

Version History
Introduced before R2006a

See Also
clear | disconnect | isvalid | opc.hda.reset

19 Functions

19-24

disconnect
Package:

Disconnect client object from OPC server

Syntax
disconnect(Obj)

Description
disconnect(Obj) disconnects the OPC client object Obj from the server. Obj can be an array of
objects.

If the disconnection from the server was successful, the function sets the Obj property Status value
to 'disconnected'. You can reconnect Obj to the server with the connect function.

If Obj is an array of objects and the function cannot disconnect some of the objects from the server, it
disconnects the remaining objects in the array and issues a warning. If the function can disconnect
none of the objects from their server, it generates an error.

Examples

Disconnect from OPC DA Server

Create an OPC data access client and connect to the server:

da = opcda('localhost','Matrikon.OPC.Simulation');
connect(da);
da.Status

Disconnect from the server:

disconnect(da);
da.Status

Disconnect from OPC HDA Server

Create an OPC HDA client for the Matrikon Simulation Server and connect to the server.

hdaObj = opchda('localhost','Matrikon.OPC.Simulation');
connect(hdaObj);

Check the status of the connection.

hdaObj.Status

Disconnect from the server and check the status again.

 disconnect

19-25

disconnect(hdaObj);
hdaObj.Status

Version History
Introduced before R2006a

See Also
Functions
connect | isConnected | propinfo

19 Functions

19-26

disconnect
Package: opc.ua

Disconnect OPC UA client from server

Syntax
disconnect(UaClient)

Description
disconnect(UaClient) disconnects the OPC UA client UaClient from its server, and sets the
client Status property to 'Disconnected'.

Examples
Disconnect an OPC UA client and view its connection status.

s = opcuaserverinfo('localhost');
UaClient = opcua(s);
connect(UaClient);
UaClient.Status

Connected

disconnect(UaClient);
UaClient.Status

Disconnected

Version History
Introduced in R2015b

See Also
connect | isConnected | opcua

 disconnect

19-27

disp
Summary of information for OPC objects

Syntax
Obj
disp(Obj)

Description
Obj or disp(Obj) displays summary information for the OPC object Obj.

If Obj is an array of objects, disp outputs a table of summary information about the objects in the
array.

Summary information includes the following information as appropriate for each item in dObj.

• ItemID: The item ID for that element.
• Value: The number and data type of the values for that element.
• Start TimeStamp: The time of the first value in the element. The time is displayed in the format
specified by the OPC date display format that can you set using opc.setDateDisplayFormat

• End TimeStamp: The time of the last value in the element.
• Quality: The number of unique qualities contained in the element. If all values have the same

quality, that HDA quality is displayed.

You can get more information about a OPC HDA data objects by using the showValues method.

Alternatively, you can display summary information for Obj by excluding the semicolon when:

• Creating a toolbox object, using the opcda, addgroup, or additem functions
• Configuring property values using dot notation

Examples
Display the summary of a data access client:

da = opcda('localhost', 'My.Server.1')

da =

Summary of OPC Data Access Client Object: localhost/My.Server.1

 Server Parameters
 Host : localhost
 ServerID : My.Server.1
 Status : disconnected
 Timeout : 10 seconds

 Object Parameters

19 Functions

19-28

 Group : 0-by-1 dagroup object
 Event Log : 0 of 1000 events

Display the summary information for an array of data access clients:

da2 = opcda('localhost', 'My.Second.Server.1');
[da da2]

 OPC Data Access Object Array:

 Index: Status: Name:
 1 disconnected localhost/My.Server.1
 2 disconnected localhost/My.Second.Server.1

Load the OPC HDA example data file and display the hdaDataSmall object:

load opcSampleHdaData;
disp(hdaDataSmall)

Version History
Introduced before R2006a

See Also
addgroup | additem | opcda | showValues

 disp

19-29

double
Package: opc.hda

Convert OPC HDA data object array to double matrix

Syntax
Vdouble = double(DObj)

Description
Vdouble = double(DObj) converts the OPC HDA data object array DObj into a matrix of data type
double.

DObj must have the same time stamps for each of the Item IDs (elements of DObj), otherwise an
error is generated. Use tsunion, tsintersect, or resample to generate an OPC HDA data object
containing the same time stamp for all items in the object.

Examples

Convert OPC HDA Data to Matrix of doubles

Load the OPC HDA example data file, convert the hdaDataSmall object to have the same time
stamps, and create a matrix of type double from the result.

load opcSampleHdaData;
dUnion = tsunion(hdaDataSmall);
Vdouble = double(dUnion);

Input Arguments
DObj — OPC HDA data
OPC HDA data object array

OPC HDA data, specified as an OPC HDA data object array.

Output Arguments
Vdouble — OPC HDA data values
matrix of double type

OPC HDA data values, returned as a matrix of double type. Vdouble is constructed as an M-by-N
matrix of double values, where M is the number of items in DObj and N is the number of time stamps
in the array.

Version History
Introduced in R2011a

19 Functions

19-30

See Also
Functions
resample | tsintersect | tsunion

 double

19-31

exportClientCertificate
Package: opc

Copy OPC UA client application certificates to file

Syntax
fileName = opc.ua.exportClientCertificate
fileName = opc.ua.exportClientCertificate("SHA1")
fileName = opc.ua.exportClientCertificate("SHA256")
opc.ua.exportClientCertificate("SHA1",FileName)
opc.ua.exportClientCertificate("SHA256",FileName)

Description
fileName = opc.ua.exportClientCertificate copies the toolbox SHA256 UA Client
Application Certificate to the file MATLAB_OPCToolbox_SHA256.der in the user folder. The full path
to the file is returned in fileName.

fileName = opc.ua.exportClientCertificate("SHA1") copies the toolbox SHA1 UA Client
Application Certificate to the file MATLAB_OPCToolbox_SHA1.der in the user folder. Note that
SHA1 is considered insecure by the OPC Foundation, and this certificate should be used only for
backward compatibility. The full path to the file is returned in fileName.

fileName = opc.ua.exportClientCertificate("SHA256") copies the toolbox SHA256 UA
Client Application Certificate to the file MATLAB_OPCToolbox_SHA256.der in the user folder. The
full path to the file is returned in fileName.

opc.ua.exportClientCertificate("SHA1",FileName) or
opc.ua.exportClientCertificate("SHA256",FileName) copies the corresponding toolbox UA
Client Application Certificate to the file given by FileName. If the full path to FileName does not
exist, the function attempts to create it. You can use the generated file to register the Client
Application Certificate with any servers that require trusted certificates. The Client Application
Certificate is exported in .der format.

Examples

Export Client Certificate

Export the SHA256 UA Client Application Certificate.

fName = opc.ua.exportClientCertificate("SHA256");

The generated file is named MATLAB_OPCToolbox_SHA256.der in the folder identified in fName.

Input Arguments
FileName — Path to generated certificate file
string | char

19 Functions

19-32

Full path to generated certificate file, specified as a string or character vector.
Example: "C:\st4\certfile.der"
Data Types: char | string

Output Arguments
fileName — File name of exported certificate
char

File name with full path to location of exported certificate file.

Version History
Introduced in R2020a

See Also
Functions
opcua | setSecurityModel

Topics
“OPC UA Security” on page 17-7
“OPC UA Certificate Management” on page 17-9

 exportClientCertificate

19-33

findDescription
Package: opc.hda

Locate OPC HDA servers with particular description

Syntax
ind = findDescription(SIObj,'DescStr')

Description
ind = findDescription(SIObj,'DescStr') returns the indices of the OPC HDA ServerInfo
elements in SIObj, where the Description property starts with 'DescStr'.

Examples
Locate all servers on the local host, with the description starting 'Matrikon'.

siObj = opchdaserverinfo('localhost');
ind = findDescription(siObj,'Matrikon');
siMatrikon = siObj(ind)

See Also
Functions
opchdaserverinfo

19 Functions

19-34

findDescription
Package: opc.ua

Find OPC UA servers containing specified description

Syntax
ServerList = findDescription(Servers,DescStr)

Description
ServerList = findDescription(Servers,DescStr) searches among Servers and returns
only those OPC UA servers whose Description property contains the character vector or string
DescStr.

Examples
Find all sample servers from the local host.

localServers = opcuaserverinfo('localhost');
sampleServers = findDescription(localServers,'Sample')

sampleServers =
OPC UA ServerInfo 'UA Sample Server':

 Connection Information
 Hostname: 'HOST2241'
 Port: 51210

Version History
Introduced in R2015b

See Also
Functions
opcuaserverinfo

 findDescription

19-35

findNodeById
Package: opc.ua

Find OPC UA server nodes by namespace index and identifier

Syntax
FoundNode = findNodeById(NodeList,NsInd,Id)

Description
FoundNode = findNodeById(NodeList,NsInd,Id) searches the nodes in NodeList for a node
whose NamespaceIndex and Identifier properties match NsInd and Id, respectively. NsInd
must be an integer, and Id must be a character vector, string, or integer.

This function might query the server for further descendants (children) of NodeList.

Examples
Find the ServerCapabilities node (Index 0, Identifier 2268) of the OPC UA server on the
local host.

UaClient = opcua('localhost',51210);
connect(UaClient);
capabilitiesNode = findNodeById(UaClient.Namespace,0,2268)

capabilitiesNode =

OPC UA Node:

 Node Information:
 Name: 'ServerCapabilities'
 Description: 'Describes capabilities supported by the server.'
 NamespaceIndex: 0
 Identifier: 2268
 NodeType: 'Object'

 Hierarchy Information:
 Parent: Server
 Children: 14

Version History
Introduced in R2015b

See Also
Functions
findNodeByName | opcua

19 Functions

19-36

findNodeByName
Package: opc.ua

Find OPC UA server nodes by name

Syntax
FoundNodes = findNodeByName(NodeList,NodeName)
FoundNodes = findNodeByName(NodeList,NodeName,'-once')
FoundNodes = findNodeByName(NodeList,NodeName,'-partial')
FoundNodes = findNodeByName(NodeList,NodeName,'-once','-partial')

Description
FoundNodes = findNodeByName(NodeList,NodeName) searches the descendants of NodeList
for all nodes whose Name property matches NodeName. The search among all nodes, including
NodeList, is not case sensitive.

FoundNodes = findNodeByName(NodeList,NodeName,'-once') stops searching when one
node has been found.

FoundNodes = findNodeByName(NodeList,NodeName,'-partial') finds all nodes that start
with NodeName.

FoundNodes = findNodeByName(NodeList,NodeName,'-once','-partial') finds only the
first partial match.

This function might query the server for further descendants (children) of NodeList.

Examples
Find the ServerCapabilities node from the server node.

UaClient = opcua('localhost',51210);
connect(UaClient);
serverNode = findNodeByName(UaClient.Namespace,'Server','-once');
capabilitiesNode = findNodeByName(serverNode,'ServerCapabilities')

capabilitiesNode =
OPC UA Node:

 Node Information:
 Name: 'ServerCapabilities'
 Description: 'Describes capabilities supported by the server.'
 NamespaceIndex: 0
 Identifier: 2268
 NodeType: 'Object'

 Hierarchy Information:
 Parent: Server
 Children: 14

Version History
Introduced in R2015b

 findNodeByName

19-37

See Also
Functions
findNodeById | opcua

19 Functions

19-38

flatnamespace
Flatten hierarchical OPC name space

Syntax
FNS = flatnamespace(NS)

Description
FNS = flatnamespace(NS) flattens the hierarchical name space NS, by recursively removing all
information in the Nodes fields of NS and placing that information into additional entries in the root
structure of FNS. You obtain a hierarchical name space using the 'hierarchical' flag in
getnamespace.

Examples
Retrieve the name space for the Matrikon Simulation Server, and then flatten the name space:

da = opcda('localhost', 'Matrikon.OPC.Simulation');
connect(da);
hierNS = getnamespace(da)
flatNS = flatnamespace(hierNS)

Version History
Introduced before R2006a

See Also
getnamespace | serveritems

 flatnamespace

19-39

flush
Package: icomm.mqtt

Clear received MQTT messages

Syntax
flush(mqttClient)
flush(mqttClient,Topic=mqttTopic)

Description
flush(mqttClient) clears all received messages from all subscribed topics in the specified MQTT
client.

flush(mqttClient,Topic=mqttTopic) clears all received messages from the specified MQTT
topic.

Note that the read function also clears messages after reading them into MATLAB, but the peek
function does not.

Examples

Flush Messages from MQTT Topic

View a recent message and then flush all messages.

peek(mqttClient,Topic="TopMW01")

ans =

 1×2 timetable

 Time Topic Data
 ____________________ _________ _______________

 14-Dec-2021 16:29:09 "TopMW01" "Hello World 3"

flush(mqttClient)
peek(mqttClient)

Warning: No data available to peek for topic "TopMW01".

ans =

 0×2 empty timetable

Input Arguments
mqttClient — MQTT client
Client object

19 Functions

19-40

MQTT client specified as an icomm.mqtt.Client object, created with the mqttclient function.
Example: mqttClient = mqttclient()
Data Types: object

mqttTopic — MQTT topic
string | char

MQTT topic to flush messages from, specified as a string or character vector.
Example: "trubits/mqTop48"
Data Types: string | char

Version History
Introduced in R2022a

See Also
Functions
mqttclient | subscribe | unsubscribe | peek

 flush

19-41

flushdata
Remove all logged data records associated with dagroup object

Syntax
flushdata(GObj)

Description
flushdata(GObj) removes all records associated with the dagroup object GObj from the toolbox
engine, and sets RecordsAvailable to 0 for that object.

GObj can be a scalar dagroup object, or a vector of dagroup objects.

Examples
Create a connected client and configure a group with two items:

da = opcda('localhost','Matrikon.OPC.Simulation');
connect(da);
grp = addgroup(da,'ClearEventLogEx');
itm1 = additem(grp,'Random.Real8');

Acquire 10 records using a logging task:

grp.UpdateRate = 0.5;
grp.RecordsToAcquire = 10;
start(grp);
wait(grp);

Examine the records available:

recordCount1 = grp.RecordsAvailable

Flush all data from the client:

flushdata(grp)
recordCount2 = grp.RecordsAvailable

Version History
Introduced before R2006a

See Also
getdata | peekdata | start | stop

19 Functions

19-42

genslread
Generate Simulink OPC Read block from MATLAB group object

Syntax
BlkPath = genslread(GrpObj)
BlkPath = genslread(GrpObj,DestSys)

Description
BlkPath = genslread(GrpObj) generates an OPC Read block from the dagroup object GrpObj,
and places the block in a new Simulink model. The OPC Read block has the same name, update rate,
and items as GrpObj. If all items in GrpObj have the same data type, the OPC Read block’s Value
port indicates that data type. BlkPath indicates the full path to the new OPC Read block.

BlkPath = genslread(GrpObj,DestSys) generates the OPC Read block and places it into the
system defined by DestSys. DestSys must be a model name or a path to a subsystem block. The
OPC Read block automatically takes a location that attempts to minimize overlap of lines and blocks,
however, the block might appear over an existing annotation.

Examples
Create a group object with two items, and then construct an OPC Read block from the group.

da = opcda('localhost','Matrikon.OPC.Simulation');
grp = addgroup(da,'ExOPCREAD');
itm1 = additem(grp,'Triangle Waves.Real8');
itm2 = additem(grp,'Saw-Toothed Waves.Int2');
% Set update rate to 2 seconds:
grp.UpdateRate = 2;
% Construct OPC Read block:
blkPath = genslread(grp)

Version History
Introduced before R2006a

See Also
Functions
genslwrite

 genslread

19-43

genslwrite
Generate Simulink OPC Write block from MATLAB group object

Syntax
BlkPath = genslwrite(GrpObj)
BlkPath = genslwrite(GrpObj,DestSys)

Description
BlkPath = genslwrite(GrpObj) generates an OPC Write block from the dagroup object
GrpObj, and places the block in a new Simulink model. The generated OPC Write block has the same
name, update rate, and items as GrpObj. BlkPath indicates the full path to the new OPC Write
block.

BlkPath = genslwrite(GrpObj,DestSys) generates the OPC Write block and places it into the
system defined by DestSys. DestSys must be a model name or a path to a subsystem block. The
OPC Write block automatically takes a location that attempts to minimize overlap of lines and blocks,
however, the block might appear over an existing annotation.

Examples
Create a group object with two items, and then construct an OPC Write block from the group.

da = opcda('localhost','Matrikon.OPC.Simulation');
grp = addgroup(da,'ExOPCREAD');
itm1 = additem(grp,'Triangle Waves.Real8');
itm2 = additem(grp,'Saw-Toothed Waves.Int2');
% Set update rate to 2 seconds:
grp.UpdateRate = 2;
% Construct OPC Write block:
blkPath = genslwrite(grp)

Version History
Introduced before R2006a

See Also
Functions
genslread

19 Functions

19-44

get
OPC object properties

Syntax
Val = get(Obj,'PropName')
get(Obj)
Val = get(Obj)

Description
Val = get(Obj,'PropName') returns the value Val of the property specified by the character
vector or string PropName, for the OPC object Obj.

If PropName is an array of property names, get returns a 1-by-N cell array of values, where N is the
length of PropName. If Obj is a vector of toolbox objects, Val is an M-by-N cell array of property
values where M is equal to the length of Obj and N is equal to the number of properties requested.

get(Obj) displays all property names and their current values for the toolbox object Obj.

Val = get(Obj) returns a structure, Val, where each field name is the name of a property of Obj
containing the value of that property. If Obj is an array of toolbox objects, Val is an M-by-1 structure
array.

Examples
Obtain the values of the Status and Group properties of an opcda object, and then display all the
properties of the object:

da = opcda('localhost','Dummy.Server');
get(da, {'Status','Group'})
out = get(da,'Status')
get(da)

Tips
As an alternative to the get function, you can directly retrieve property values using dot-notation.
The following two lines achieve the same result.

t = get(daObj,'Timeout');
t = daObj.Timeout;

Version History
Introduced before R2006a

 get

19-45

See Also
Functions
opchelp | propinfo | set

19 Functions

19-46

getAllChildren
Package: opc.ua

Recursively retrieve all children of OPC UA server node

Syntax
AllChildNodes = getAllChildren(StartNode)

Description
AllChildNodes = getAllChildren(StartNode) returns all children of a given node as a vector
of Node objects, including all children recursively.

Note This function is memory intensive. Use it only when necessary. Alternatively, consider accessing
the Children property of the node, or searching with browseNamespace, findNodeByName, or
findNodeById.

Examples
This example shows how to return all children of the server node.

UaClient = opcua('localhost',51210);
connect(UaClient);
serverNode = UaClient.Namespace(1);
allServerNodes = getAllChildren(serverNode);
whos allServerNodes

 Name Size Bytes Class Attributes

 allServerNodes 1x349 2896 opc.ua.Node

Version History
Introduced in R2015b

See Also
findNodeById | findNodeByName | browseNamespace | getNamespace

 getAllChildren

19-47

getDescription
Package: opc.hda

Get description of OPC HDA aggregate type or item attribute

Syntax
DStr = getDescription(Obj,ID)
DStr = getDescription(Obj,NameStr)

Description
DStr = getDescription(Obj,ID) returns the description character vector associated with the
aggregate type or item attribute given by ID. If ID is a vector, DStr is a cell array of description
character vectors.

DStr = getDescription(Obj,NameStr) returns the description character vector associated with
the aggregate type or item attribute given by the character vector or string NameStr. If NameStr is
an array, DStr is a cell array of description character vectors.

Examples
Get a description of all aggregate types provided by the Matrikon Simulation Server.

hdaObj = opchda('localhost','Matrikon.OPC.Simulation');
connect(hdaObj);
allDesc = getDescription(hdaObj.Aggregates)

Get a description of all item attributes provided by the Matrikon Simulation Server.

hdaObj = opchda('localhost','Matrikon.OPC.Simulation');
connect(hdaObj);
allDesc = getDescription(hdaObj.ItemAttributes)

See Also
Functions
getIDFromName

19 Functions

19-48

getdata
Retrieve logged OPC records from toolbox engine to MATLAB workspace

Syntax
S = getdata(GObj)
S = getdata(GObj,NRec)
TSCell = getdata(GObj,'timeseries')
TSCell = getdata(GObj, NRec,'timeseries')
[ItmID,Val,Qual,TStamp,ETime] = getdata(GObj,'DataType')
[ItmID,Val,Qual,TStamp,ETime] = getdata(GObj,NRec,'DataType')

Description
S = getdata(GObj) returns the number of records specified in the RecordsToAcquire property
of dagroup object GObj, from the toolbox software engine. GObj must be a scalar dagroup object.

S is an NRec-by-1 structure array, where NRec is the number of records returned. S contains the
fields 'LocalEventTime' and 'Items'. LocalEventTime is a date vector corresponding to the
local event time for that record. Items is an NItems-by-1 structure array containing the fields shown
below.

Field Name Description
ItemID The fully qualified tag name, as a character vector.
Value The data value. The data type is defined by the item's DataType property.
Quality The data quality, as a character vector. For a description, see “OPC Quality”

on page A-2.
TimeStamp The time the value was changed, as a date vector.

S = getdata(GObj,NRec) retrieves the first NRec records from the toolbox engine.

TSCell = getdata(GObj,'timeseries') and
TSCell = getdata(GObj, NRec,'timeseries') assign the data received from the toolbox
engine to a cell array of time series objects. TSCell contains as many time series objects as there are
items in the group, with the name of each time series object set to the item ID. The quality value
stored in the time series object is offset from the quality value returned by the OPC server by 128.
The quality displayed by each is the same. Because each record logged might not contain information
for every item, the time series objects have only as many data points as there are records containing
information about that particular item ID.

[ItmID,Val,Qual,TStamp,ETime] = getdata(GObj,'DataType') and
[ItmID,Val,Qual,TStamp,ETime] = getdata(GObj,NRec,'DataType') assign the data
retrieved from the toolbox engine to separate arrays. Valid data types are 'double', 'single',
'int8', 'int16', 'int32', 'uint8', 'uint16', 'uint32', 'logical', 'currency', 'date',
and 'cell'.

ItmID is a 1-by-NItem cell array of item names.

 getdata

19-49

Val is an NRec-by-NItem array of values with the data type specified. If a data type of 'cell'is
specified, then Val is a cell array containing data in the returned data type for each item. Otherwise,
Val is a numeric array of the specified data type.

Note 'DataType' must be set to 'cell' when retrieving records containing character vectors or
arrays of values.

Qual is an NRec-by-NItem array of quality character vectors for each value in Val.

TStamp is an NRec-by-NItem array of MATLAB date numbers representing the time when the
relevant value and quality were stored on the OPC server.

ETime is an NRec-by-1 array of MATLAB date numbers, corresponding to the local event time for
each record.

Each record logged may not contain information for every item returned, since data for that item may
not have changed from the previous update. When data is returned as a numeric matrix, the missing
item columns for that record are filled as follows.

Argument Behavior for Missing Items
Val The corresponding value entry is set to the previous value of that item, or to

NaN if there is no previous value.
Qual The corresponding quality entry is set to 'Repeat'.
TStamp The corresponding time stamp entry is set to the first valid time stamp for that

record.

getdata is a blocking function that returns execution control to the MATLAB workspace when one of
the following conditions is met:

• The requested number of records becomes available.
• The logging operation is automatically stopped by the engine. If fewer records are available than

the number requested, a warning is generated and all available records are returned.
• You issue Ctrl+C. The logging task does not stop, and no data is removed from the toolbox engine.

When getdata completes, the object's RecordsAvailable property is reduced by the number of
records returned by getdata.

Examples
Configure and start a logging task for 60 seconds of data.

da = opcda('localhost','Matrikon.OPC.Simulation');
connect(da);
grp = addgroup(da,'ExOPCREAD');
itm1 = additem(grp,'Triangle Waves.Real8');
itm2 = additem(grp,'Saw-Toothed Waves.Int2');
grp.LoggingMode = 'memory';
grp.RecordsToAcquire = 60;
start(grp);

Retrieve the first two records into a structure. This operation waits for at least two records.

19 Functions

19-50

s = getdata(grp,2)

Retrieve all the remaining data into a double array and plot it with a legend.

[itmID,val,qual,tStamp] = getdata(grp,'double');
plot(tStamp(:,1),val(:,1),tStamp(:,2),val(:,2));
legend(itmID);
datetick x keeplimits

Version History
Introduced before R2006a

See Also
Functions
flushdata | peekdata | start | stop

 getdata

19-51

getIDFromName
Package: opc.hda

Translate OPC HDA aggregate type or item attribute name to numeric identifier

Syntax
ID = getIDFromName(Obj,NameStr)

Description
ID = getIDFromName(Obj,NameStr) returns the ID associated with the aggregate type or
attribute item name NameStr. If NameStr is an array, ID is a vector of IDs.

Examples
Retrieve the ID of the TIMEAVERAGE item attribute provided by the Matrikon Simulation Server.

hdaObj = opchda('localhost','Matrikon.OPC.Simulation');
connect(hdaObj);
descID = getIDFromName(hdaObj.Aggregates,'TIMEAVERAGE')

Retrieve the ID of the DESCRIPTION item attribute provided by the Matrikon Simulation Server.

hdaObj = opchda('localhost','Matrikon.OPC.Simulation');
connect(hdaObj);
descID = getIDFromName(hdaObj.ItemAttributes,'DESCRIPTION')

See Also
Functions
getDescription | getNameList

19 Functions

19-52

getIDList
Package: opc.hda

Get all aggregate type or item attribute IDs

Syntax
ID = getIDList(Obj)

Description
ID = getIDList(Obj) returns all IDs stored in the OPC HDA aggregate type or item attribute
object Obj.

Examples
Retrieve the IDs of the aggregate types provided by the Matrikon Simulation Server.

hdaObj = opchda('localhost','Matrikon.OPC.Simulation');
connect(hdaObj);
allIDs = getIDList(hdaObj.Aggregates)

Retrieve the IDs of the item attributes provided by the Matrikon Simulation Server.

hdaObj = opchda('localhost','Matrikon.OPC.Simulation');
connect(hdaObj);
allIDs = getIDList(hdaObj.ItemAttributes)

See Also
Functions
getNameList

 getIDList

19-53

getIndexFromID
Package: opc.hda

Indices matching OPC HDA data item IDs

Syntax
ind = getIndexFromID(dObj,'itemID')
ind = getIndexFromID(dObj,idCell)

Description
ind = getIndexFromID(dObj,'itemID') returns the index of HDA data object array dObj that
matches the item ID 'itemID'.

ind = getIndexFromID(dObj,idCell) returns the indices of HDA data object array dObj that
match the item IDs contained in the cell array idCell. idCell must be a cell array of character
vectors.

Examples
Load the OPC HDA example data file and find the index of 'Item Example.Item.2':

load opcSampleHdaData;
ind = getIndexFromID(hdaDataVis,'Example.Item.2');

19 Functions

19-54

getNameList
Package: opc.hda

Get all aggregate type or item attribute names

Syntax
NameCell = getNameList(Obj)

Description
NameCell = getNameList(Obj) returns all names stored in the OPC HDA aggregate type or item
attribute object Obj. NameCell is a cell array of character vectors (even if Obj stores only one ID).

Examples
Retrieve the names of the aggregate types provided by the Matrikon Simulation Server.

hdaObj = opchda('localhost', 'Matrikon.OPC.Simulation');
connect(hdaObj);
allNames = getNameList(hdaObj.Aggregates)

Retrieve the names of the item attributes provided by the Matrikon Simulation Server.

hdaObj = opchda('localhost', 'Matrikon.OPC.Simulation');
connect(hdaObj);
allNames = getNameList(hdaObj.ItemAttributes)

See Also
getIDList | getIDFromName

 getNameList

19-55

getnamespace
OPC DA server name space

Syntax
S = getnamespace(DAObj)
S = getnamespace(DAObj,'Filter1',Val1,'Filter2',Val2, ...)

Description
S = getnamespace(DAObj) returns the entire name space of the server associated with the data
access (opcda) object specified by DAObj. S is a recursive structure array representing the name
space of the server. Each element of S is a node in the name space. S contains the fields:

• Name — a descriptive name
• FullyQualifiedID — the fully qualified ItemID of that node
• NodeType — defines the node as a 'branch' node (containing other nodes) or 'leaf' node

(containing no other nodes)
• Nodes — a structure array with the same fields as S, representing the nodes contained in this

branch of the name space.

Use flatnamespace to flatten the hierarchical name space.

S = getnamespace(DAObj,'Filter1',Val1,'Filter2',Val2, ...) allows you to filter the
retrieved name space based on a number of available browse filters. Available filters are described in
the table in Browse Filters on page 19-57.

Examples

Get Name Spaces

1 Get the entire name space for the Matrikon Simulation Server on the local host:

da = opcda('localhost','Matrikon.OPC.Simulation');
connect(da);
nsFull = getnamespace(da)

2 Get only the first level of the name space:

nsPart = getnamespace(da,'Depth',1)
3 Add the nodes contained in the first branch of the name space to the existing structure:

nsPart(1).Nodes = getnamespace(da, ...
 'StartItemID', nsPart(1).FullyQualifiedID, ...
 'Depth',1);

19 Functions

19-56

Browse Filters
BrowseFilter Description
'StartItemID' Specify the FullyQualifiedID of a branch node, as a character vector or

string. Only nodes contained in that branch node will be returned. Some
OPC servers do not support partial name space retrieval based on this
option: An error is generated if you attempt to use the 'StartItemID'
browse filter on such a server.

'Depth' Specify the depth of the name space that you want returned. A 'Depth'
value of 1 returns only the nodes contained in the starting position. A
'Depth' value of 2 returns the nodes contained in the starting position
and all of their nodes. A 'Depth' value of Inf returns all nodes. When
combined with the 'StartItemID' filter, the 'Depth' filter provides a
useful way to investigate a name server hierarchy one layer at a time.

'AccessRights' Restricts the search to leaf nodes with particular access right
characteristics. Specify 'read' to return nodes that include the read
access right, and 'write' to return nodes that include the write access
right. An empty character vector ('') returns nodes with any access rights.
Note that branch nodes will still be returned in the name space, in order to
contain the leaf nodes that have the requested access rights.

'DataType' Restricts the search to nodes with a particular canonical data type. Valid
data types are 'double', 'single', 'int8', 'int16', 'int32',
'uint8', 'uint16', 'uint32', 'logical', 'currency', and 'date'.
Use the 'DataType' filter to find server items with a specific data type,
such as 'double' or 'date'. Note that branch nodes will still be returned
in the name space, in order to contain the leaf nodes that have the
required data type.

Version History
Introduced before R2006a

See Also
Functions
additem | flatnamespace | serveritems

 getnamespace

19-57

getNameSpace
Package: opc.hda

OPC HDA server name space

Syntax
NS = getNameSpace(HdaObj)
NS = getNameSpace(HdaObj,'StartItemID','itemID')
NS = getNameSpace(HdaObj,'Depth',dLevel)
NS = getNameSpace(HdaObj,'StartItemID','itemID','Depth',dLevel)

Description
NS = getNameSpace(HdaObj) retrieves the entire server name space from the connected OPC
HDA Client HdaObj.

NS = getNameSpace(HdaObj,'StartItemID','itemID') retrieves the server name space
beginning at Fully Qualified Item ID 'itemID', and all branches in the name space below 'itemID'.

NS = getNameSpace(HdaObj,'Depth',dLevel) retrieves the dLevel levels of the server name
space beginning at the server name space root. Specifying dLevel as 1 retrieves only the nodes
(branch and leaf) contained in the root of the server name space.

NS = getNameSpace(HdaObj,'StartItemID','itemID','Depth',dLevel) retrieves the
dLevel levels of the name space starting at Fully Qualified Item ID 'itemID'.

In all cases, NS is a recursive structure array representing the name space of the server. Each
element of NS is a node in the name space. NS contains the fields:

• Name — a descriptive name
• FullyQualifiedID — the fully qualified ItemID of that node
• NodeType — defines the node as a 'branch' node (containing other nodes) or 'leaf' node

(containing no other nodes)
• Nodes — a structure array with the same fields as NS, representing the nodes contained in this

branch of the name space

Use flatnamespace to flatten the hierarchical name space.

Examples

Get Name Spaces

1 Get the entire name space for the Matrikon Simulation Server on the local host:
hdaObj = opchda('localhost','Matrikon.OPC.Simulation');
connect(hdaObj);
nsFull = getNameSpace(hdaObj)

2 Get only the first level of the name space:

19 Functions

19-58

nsPart = getNameSpace(hdaObj,'Depth',1)
3 Add the nodes contained in the first branch of the name space to the existing structure:

nsPart(1).Nodes = getNameSpace(hdaObj, ...
 'StartItemID',nsPart(1).FullyQualifiedID, ...
 'Depth',1);

Version History
Introduced in R2011a

See Also
Functions
connect

 getNameSpace

19-59

getNamespace
Package: opc.ua

Namespace of OPC UA server associated with client

Syntax
nodes = getNamespace(UaClient)
nodes = getNamespace(UaClient,BrowseNode)
nodes = getNamespace(___ ,'-force')

Description
nodes = getNamespace(UaClient) retrieves one layer of the namespace of the server associated
with client object UaClient. The namespace is stored in the Namespace property of uaClient as a
hierarchical tree of nodes.

nodes = getNamespace(UaClient,BrowseNode) retrieves only the nodes referenced from
BrowseNode, and stores them in the Children property of BrowseNode. If the BrowseNode
argument is empty or omitted, the first layer of the namespace is retrieved and stored in the client.

getNamespace might not need to retrieve nodes from the server. If the nodes already exist locally,
they are returned automatically.

nodes = getNamespace(___ ,'-force') forces retrieval of the Children property contents
from the server again and stores them in BrowseNode, even if the nodes already exist locally.

Note When retrieving a namespace with many children, you should allow a significant amount of
time for this function to complete, especially when displaying the results in the MATLAB command
window. For example, retrieving a namespace with several thousand children could take up to a
minute or more.

Examples

Retrieve One Layer of Namespace

This example shows how to retrieve one layer of the namespace from the OPC UA client.

s = opcuaserverinfo('localhost');
UaClient = opcua(s);
connect(UaClient);
nodes = getNamespace(UaClient)

nodes =
1x4 OPC UA Node array:
 index Name NsInd Identifier NodeType Children
 ----- ------------- ----- ---------- -------- --------
 1 Server 0 2253 Object 10

19 Functions

19-60

 2 Data 2 10157 Object 3
 3 Boilers 4 1240 Object 2
 4 MemoryBuffers 7 1025 Object 2

Input Arguments
UaClient — OPC UA client
OPC UA client object

OPC UA client, specified as an OPC UA client object

BrowseNode — Browse node
node object

Browse node, specified as a node object.

Output Arguments
nodes — Layer of namespace tree from server
structure

Layer of namespace tree from server, returned as a structure.

Version History
Introduced in R2015b

See Also
Functions
browseNamespace

 getNamespace

19-61

getNodeAttributes
Package: opc.ua

Read OPC UA server node attributes

Syntax
Values = getNodeAttributes(UaClient,NodeList,AttributeIds)
Values = getNodeAttributes(NodeList,AttributeIds)

Description
Values = getNodeAttributes(UaClient,NodeList,AttributeIds) reads from the server
the attributes defined by AttributeIds for the nodes identified by NodeList. You can define node
objects for NodeList using getNamespace or browseNamespace.

Values = getNodeAttributes(NodeList,AttributeIds) reads from the nodes identified by
NodeList. All nodes must be of the same connected client.

Examples

Read node attributes

This example shows how to read node attributes from the server for one layer of the namespace.

s = opcuaserverinfo('localhost');
UaClient = opcua(s);
connect(UaClient);
NodeList = getNamespace(UaClient);
Values = getNodeAttributes(UaClient,NodeList,{'NodeId','Description'})

Values =
4x1 struct array with fields:
 NodeId
 Description

Input Arguments
UaClient — OPC UA client
OPC UA client object

OPC UA client, specified as an OPC UA client object

NodeList — List of nodes
array of node objects

List of nodes, specified as an array of node objects. For information on node object functions and
properties, type

help opc.ua.Node

19 Functions

19-62

AttributeIds — Server attributes
array of uint32, cell array of character vectors, or array of strings

Server attributes specified as an array of uint32, cell array of character vectors, or array of strings.
For information on server AttributeId values, type

help opc.ua.AttributeId

Output Arguments
Values — Attribute values
structure

Attribute values, returned as a structure. The structure array contains the fields given by the
AttributeIds. If an attribute cannot be read for a node, the relevant field will be empty.

Version History
Introduced in R2015b

See Also
Functions
getNamespace | browseNamespace | readValue

 getNodeAttributes

19-63

getServerStatus
Package: opc.ua

Status of OPC UA server

Syntax
sstat = getServerStatus(UaClient)

Description
sstat = getServerStatus(UaClient) retrieves the status of the OPC UA server connected to
UaClient. UaClient must be a scalar connected OPC UA client, not a vector of clients.

sstat is returned as a structure containing the following fields:

Field name Description
StartTime Time the server started (MATLAB datetime)
CurrentTime Current time on the server (MATLAB datetime)
State State of the server (character vector)
BuildInfo Structure describing the build information for the

server, including ManufacturerName,
ProductName, and SoftwareVersion

SecondsTillShutdown If the server is shutting down, how long until
shutdown occurs

ShutdownReason Reason for the server shutdown, or an empty
character vector

Examples
Connect an OPC UA client and retrieve the status of its server.

s = opcuaserverinfo('localhost');
UaClient = opcua(s);
connect(UaClient);
sstat = getServerStatus(UaClient)

sstat =
 StartTime: 10-Jun-2015 16:39:17
 CurrentTime: 10-Jun-2015 16:55:00
 State: 'Running'
 BuildInfo: [1x1 struct]
 SecondsTillShutdown: 0
 ShutdownReason: ''

Version History
Introduced in R2015b

19 Functions

19-64

See Also
connect | disconnect | opcua | opcuaserverinfo

 getServerStatus

19-65

int16
Package: opc.hda

Convert OPC HDA data object array to int16 matrix

Syntax
Vint16 = int16(DObj)

Description
Vint16 = int16(DObj) converts the OPC HDA data object array DObj into an int16 matrix.

DObj must have the same time stamps for each of the Item IDs (elements of DObj), otherwise an
error is generated. Use tsunion, tsintersect, or resample to generate an OPC HDA data object
containing the same time stamp for all items in the object.

Examples

Convert OPC HDA Data to int16 Matrix

Load the OPC HDA example data file, convert the hdaDataSmall object to have the same time
stamps, and create an int16 matrix from the result.

load opcSampleHdaData;
dUnion = tsunion(hdaDataSmall);
Vint16 = int16(dUnion);

Input Arguments
DObj — OPC HDA data
OPC HDA data object array

OPC HDA data, specified as an OPC HDA data object array.

Output Arguments
Vint16 — OPC HDA data values
int16 matrix

OPC HDA data values, returned as an int16 matrix. Vint16 is constructed as an M-by-N matrix of
int16 values, where M is the number of items in DObj and N is the number of time stamps in the
array.

Version History
Introduced in R2011a

19 Functions

19-66

See Also
Functions
resample | tsintersect | tsunion

 int16

19-67

int32
Package: opc.hda

Convert OPC HDA data object array to int32 matrix

Syntax
Vint32 = int32(DObj)

Description
Vint32 = int32(DObj) converts the OPC HDA data object array DObj into an int32 matrix.

DObj must have the same time stamps for each of the Item IDs (elements of DObj), otherwise an
error is generated. Use tsunion, tsintersect, or resample to generate an OPC HDA data object
containing the same time stamp for all items in the object.

Examples

Convert OPC HDA Data to int32 Matrix

Load the OPC HDA example data file, convert the hdaDataSmall object to have the same time
stamps, and create an int32 matrix from the result.

load opcSampleHdaData;
dUnion = tsunion(hdaDataSmall);
Vint32 = int32(dUnion);

Input Arguments
DObj — OPC HDA data
OPC HDA data object array

OPC HDA data, specified as an OPC HDA data object array.

Output Arguments
Vint32 — OPC HDA data values
int32 matrix

OPC HDA data values, returned as an int32 matrix. Vint32 is constructed as an M-by-N matrix of
int32 values, where M is the number of items in DObj and N is the number of time stamps in the
array.

Version History
Introduced in R2011a

19 Functions

19-68

See Also
Functions
resample | tsintersect | tsunion

 int32

19-69

int64
Package: opc.hda

Convert OPC HDA data object array to int64 matrix

Syntax
Vint64 = int64(DObj)

Description
Vint64 = int64(DObj) converts the OPC HDA data object array DObj into an int64 matrix.

DObj must have the same time stamps for each of the Item IDs (elements of DObj), otherwise an
error is generated. Use tsunion, tsintersect, or resample to generate an OPC HDA data object
containing the same time stamp for all items in the object.

Examples

Convert OPC HDA Data to int64 Matrix

Load the OPC HDA example data file, convert the hdaDataSmall object to have the same time
stamps, and create an int64 matrix from the result.

load opcSampleHdaData;
dUnion = tsunion(hdaDataSmall);
Vint64 = int64(dUnion);

Input Arguments
DObj — OPC HDA data
OPC HDA data object array

OPC HDA data, specified as an OPC HDA data object array.

Output Arguments
Vint64 — OPC HDA data values
int64 matrix

OPC HDA data values, returned as an int64 matrix. Vint64 is constructed as an M-by-N matrix of
int64 values, where M is the number of items in DObj and N is the number of time stamps in the
array.

Version History
Introduced in R2011a

19 Functions

19-70

See Also
Functions
resample | tsintersect | tsunion

 int64

19-71

int8
Package: opc.hda

Convert OPC HDA data object array to int8 matrix

Syntax
Vint8 = int8(DObj)

Description
Vint8 = int8(DObj) converts the OPC HDA data object array DObj into an int8 matrix.

DObj must have the same time stamps for each of the Item IDs (elements of DObj), otherwise an
error is generated. Use tsunion, tsintersect, or resample to generate an OPC HDA data object
containing the same time stamp for all items in the object.

Examples

Convert OPC HDA Data to int8 Matrix

Load the OPC HDA example data file, convert the hdaDataSmall object to have the same time
stamps, and create an int8 matrix from the result.

load opcSampleHdaData;
dUnion = tsunion(hdaDataSmall);
Vint8 = int8(dUnion);

Input Arguments
DObj — OPC HDA data
OPC HDA data object array

OPC HDA data, specified as an OPC HDA data object array.

Output Arguments
Vint8 — OPC HDA data values
int8 matrix

OPC HDA data values, returned as an int8 matrix. Vint8 is constructed as an M-by-N matrix of int8
values, where M is the number of items in DObj and N is the number of time stamps in the array.

Version History
Introduced in R2011a

19 Functions

19-72

See Also
Functions
resample | tsintersect | tsunion

 int8

19-73

isConnected
Package: opc.hda

True if HDA Client is connected to server

Syntax
isConnected(hdaObj)

Description
isConnected(hdaObj) returns true if the OPC HDA Client object hdaObj is connected to an OPC
HDA server, and false otherwise.

If hdaObj is an array, isConnected returns an array the same size as hdaObj, containing true
where that respective element of hdaObj is connected to a server and false otherwise.

Examples
Create an HDA client for the Matrikon Simulation Server and connect to the server:

hdaObj = opchda('localhost', 'Matrikon.OPC.Simulation');
connect(hdaObj);

Check the status of the connection:

tf = isConnected(hdaObj)

Version History
Introduced in R2011a

See Also
connect | disconnect

19 Functions

19-74

isConnected
Package: opc.ua

Determine if OPC UA client object is connected to server

Syntax
tf = isConnected(UaClient)

Description
tf = isConnected(UaClient) returns true (logical 1) if the client UaClient is connected to the
server, or false (logical 0) otherwise. If UaClient is a vector of client objects, tf is a vector
representing the connected state of each client.

Examples
Connect an OPC UA client and view its connection status.

s = opcuaserverinfo('localhost');
UaClient = opcua(s);
connect(UaClient);
isConnected(UaClient)

1

disconnect(UaClient);
isConnected(UaClient)

0

Version History
Introduced in R2015b

See Also
connect | disconnect

 isConnected

19-75

isEmptyNode
Package: opc.ua

True for empty nodes of OPC UA node array

Syntax
tf = isEmptyNode(NodeObj)

Description
tf = isEmptyNode(NodeObj) returns true (logical 1) for nodes that are empty, or false (logical 0)
otherwise. A node is empty if its NamespaceIndex or Identifier property is empty. You cannot use
an empty node in any read, write, or query operation on a connected client.

Examples

Determine If Nodes Are Empty

Identify which nodes in an array are empty.

Browse the namespace to select nodes. This example selects two.

s = opcuaserverinfo('localhost');
UaClient = opcua(s);
connect(UaClient);
nodes = browseNamespace(UaClient)

nodes =

1x2 OPC UA Node array:
 index Name NsInd Identifier NodeType Children
 ----- ------ ----- ---------- -------- --------
 1 FTX001 4 1243 Object 1
 2 Output 4 1244 Variable 1

You can create an array of nodes that contains results from separate browsing results. Assign the
latest nodes to this array, and verify which nodes are empty.

nodeArray(3:4) = nodes;
tf = isEmptyNode(nodeArray)

tf =

 1x4 logical array

 1 1 0 0

19 Functions

19-76

The result indicates that elements 1 and 2 are empty nodes.

Input Arguments
NodeObj — OPC UA nodes
array of node objects

OPC UA nodes, specified as an array of node objects.
Example: NodeObj = opcuanode()

Output Arguments
tf — Indication that node is empty
true (1) | false (0)

Indication that node is empty, returned as a logical value or array of logical values. A value of true
(1) indicates an empty node.

Version History
Introduced in R2016b

See Also
Functions
isVariableType | isObjectType | opcuanode

 isEmptyNode

19-77

isObjectType
Package: opc.ua

True for object nodes of OPC UA server

Syntax
tf = isObjectType(NodeObj)

Description
tf = isObjectType(NodeObj) returns true (logical 1) for nodes that are object type nodes, or
false (logical 0) otherwise. You cannot read current and historical values from object type nodes.
Object nodes are used to organize the server name space.

Examples
Identify some nodes and determine if they are object type nodes.

s = opcuaserverinfo('localhost');
UaClient = opcua(s);
connect(UaClient);
nodes = browseNamespace

nodes =
1x2 OPC UA Node array:
 index Name NsInd Identifier NodeType Children
 ----- ----------- ----- ---------- -------- --------
 1 DoubleValue 2 10226 Variable 0
 2 Scalar 2 10159 Object 29

isObjectType(nodes(1))

ans =
 0

isObjectType(nodes(2))

ans =
 1

Version History
Introduced in R2015b

See Also
isVariableType | opcuanode

19 Functions

19-78

isvalid
True for undeleted OPC objects

Syntax
A = isvalid(Obj)

Description
A = isvalid(Obj) returns a logical array, A, that contains false where the elements of Obj are
deleted OPC objects and true where the elements of Obj are valid objects.

Use the clear command to clear an invalid toolbox object from the workspace.

Examples
Create two valid OPC data access objects, and then delete one to make it invalid:

da(1) = opcda('localhost','Dummy.ServerA');
da(2) = opcda('localhost','Dummy.ServerB');
out1 = isvalid(da)
% Delete the first object and show it is invalid:
delete(da(1))
out2 = isvalid(da)
% Delete the second object and clear the object array:
clear da

Version History
Introduced before R2006a

See Also
delete | opchelp

 isvalid

19-79

isVariableType
Package: opc.ua

True for variable nodes of OPC UA server

Syntax
tf = isVariableType(NodeObj)

Description
tf = isVariableType(NodeObj) returns true (logical 1) for nodes that are variable type nodes,
or false (logical 0) otherwise. You can write values, and read current and historical values from
variable type nodes.

Examples
Identify some node and determine if they are variable type nodes.

s = opcuaserverinfo('localhost');
UaClient = opcua(s);
connect(UaClient);
nodes = browseNamespace(UaClient)

nodes =
1x2 OPC UA Node array:
 index Name NsInd Identifier NodeType Children
 ----- ----------- ----- ---------- -------- --------
 1 DoubleValue 2 10226 Variable 0
 2 Scalar 2 10159 Object 29

isVariableType(nodes(1))

ans =
 1

isVariableType(nodes(2))

ans =
 0

Version History
Introduced in R2015b

See Also
Functions
isObjectType | opcuanode

19 Functions

19-80

load
Load OPC objects from MAT-file

Syntax
load FileName
load FileName Obj1 Obj2 ...
S = load('FileName','Obj1','Obj2',...)

Description
load FileName returns all variables from the MAT-file FileName into the MATLAB workspace.

load FileName Obj1 Obj2 ... returns the specified OPC objects, Obj1, Obj2, ... from the
MAT-file FileName into the MATLAB workspace.

S = load('FileName','Obj1','Obj2',...) returns the structure S with the specified toolbox
objects Obj1, Obj2, ... from the MAT-file FileName, instead of directly loading the toolbox objects
into the workspace. The field names in S match the names of the retrieved toolbox objects. If you
specify no objects, load returns all variables from the MAT-file.

When you load an object, its read-only properties initially take their default values. For example, the
Status property value of an opcda object is 'disconnected'. Use propinfo to determine if a
property is read-only.

Examples
Assume the example on the save reference page saved the group object grp in the file mygroup.
Load the group object from mygroup, and create a reference to the parent client.

load mygroup
da = grp.Parent;

Version History
Introduced before R2006a

See Also
Functions
opchelp | propinfo | save

 load

19-81

logical
Package: opc.hda

Convert OPC HDA data object array to logical matrix

Syntax
Vlogical = logical(DObj)

Description
Vlogical = logical(DObj) converts the OPC HDA data object array DObj into a matrix of data
type logical.

DObj must have the same time stamps for each of the Item IDs (elements of DObj), otherwise an
error is generated. Use tsunion, tsintersect, or resample to generate an OPC HDA data object
containing the same time stamp for all items in the object.

Examples

Convert OPC HDA Data to Matrix of logicals

Load the OPC HDA example data file, convert the hdaDataSmall object to have the same time
stamps, and create a matrix of type logical from the result.

load opcSampleHdaData;
dUnion = tsunion(hdaDataSmall);
Vlogical = logical(dUnion);

Input Arguments
DObj — OPC HDA data
OPC HDA data object array

OPC HDA data, specified as an OPC HDA data object array.

Output Arguments
Vlogical — OPC HDA data values
matrix of logical type

OPC HDA data values, returned as a matrix of logical type. Vlogical is constructed as an M-by-N
matrix of logical values, where M is the number of items in DObj and N is the number of time
stamps in the array.

Version History
Introduced in R2011a

19 Functions

19-82

See Also
Functions
resample | tsintersect | tsunion

 logical

19-83

makepublic
Convert private group into public group

Syntax
makepublic(GObj)

Description
makepublic(GObj) makes the dagroup object GObj public. Public groups allow you to share data
configuration information across multiple OPC clients. Use the GroupType property to check
whether a group is public.

Public groups on a server cannot have the same name. If you attempt to call makepublic on a
private group with the same name as an existing public group, you get an error.

After you make a group public, you cannot add items to that group or delete items from that group.
You must ensure that a group contains the required items before making the group public.

Not all OPC data access servers support public groups. If you try to make a public group on a server
that does not support public groups, you get an error. To verify that a server supports public groups,
use the opcserverinfo function on the client connected to that server: Look for an entry
'IOPCPublicGroups' in the 'SupportedInterfaces' field.

Use the clonegroup function to create a private group from a public group.

Examples
Create a group on a local server and make the group public:

da = opcda('localhost', 'Dummy.Server');
connect(da);
grp = addgroup(da, 'MakepublicEx');
itm1 = additem(grp, 'Device1.Item1');
itm2 = additem(grp, 'Device1.Item2');
makepublic(grp);

Version History
Introduced before R2006a

See Also
clonegroup | opcserverinfo

19 Functions

19-84

maskWrite
Perform mask write operation on a holding register

Syntax
maskWrite(m,address,andMask,orMask)
maskWrite(m,address,andMask,orMask,serverId)

Description
maskWrite(m,address,andMask,orMask) writes data to Modbus object m to a holding register at
address address, using the indicated mask values. The function can set or clear individual bits in a
specific holding register. It is a read/modify/write operation, and uses a combination of an AND mask,
an OR mask, and the current contents of the register.

maskWrite(m,address,andMask,orMask,serverId) additionally specifies the serverId as the
address of the server to send the write command to.

Examples

Perform a Mask Read on a Holding Register

You can modify the contents of a holding register using the maskWrite function. The function can set
or clear individual bits in a specific holding register. It is a read/modify/write operation, and uses a
combination of an AND mask, an OR mask, and the current contents of the register.

Create the AND and OR variables.

andMask = 6
orMask = 0

Set bit 0 at address 20, and perform a mask write operation. Since the andMask is a 6, that clears all
bits except for bits 1 and 2. Bits 1 and 2 are preserved.

maskWrite(m,20,andMask,orMask)

Perform a Mask Read on a Holding Register, and Specify Server ID

Use the serverId argument to specify the address of the server to send the mask write command to.

Set bit 0 at address 20 and perform a mask write operation at server ID 3.

maskWrite(m,20,6,0,3)

Input Arguments
address — Register address to perform mask write operation on
double

 maskWrite

19-85

Register address to perform mask write operation on, specified as a double. Address must be the first
argument after the object name. This example sets bit 0 at address 20 and performs a mask write
operation.
Example: maskWrite(m,20,andMask,orMask)
Data Types: double

andMask — AND value to use in mask write operation
double

AND value to use in mask write operation, specified as a double. andMask must be the second
argument after the object name. The valid range is 0–65535.

This example sets bit 0 at address 20 and performs a mask write operation, using 6 as the AND value.
Example: maskWrite(m,20,6,0)
Data Types: double

orMask — OR value to use in mask write operation
double

OR value to use in mask write operation, specified as a double. orMask must be the third argument
after the object name. The valid range is 0–65535.

This example sets bit 0 at address 20 and performs a mask write operation, using 0 as the OR value.
Example: maskWrite(m,20,6,0)
Data Types: double

serverId — Address of the server to send the mask write command to
double

Address of the server to send the mask write command to, specified as a double. Server ID must be
specified after the object name, address, AND mask, and OR mask. If you do not specify a serverId,
the default of 1 is used. Valid values are 0–247, with 0 being the broadcast address. This example
sets bit 0 at address 20 and performs a mask write operation at server ID 3.
Example: maskWrite(m,20,6,0,3)
Data Types: double

Tips
The function algorithm works as follows:

 Result = (register value AND andMask) OR (orMask AND (NOT andMask))

For example:

 Hex Binary
Current contents 12 0001 0010
And_Mask F2 1111 0010
Or_Mask 25 0010 0101
(NOT And_Mask) 0D 0000 1101

Result 17 0001 0111

19 Functions

19-86

If the orMask value is 0, the result is simply the logical ANDing of the current contents and the
andMask. If the andMask value is 0, the result is equal to the orMask value.

Version History
Introduced in R2017a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
modbus | read | write | writeRead

Topics
“Create a Modbus Connection” on page 18-3
“Configure Properties for Modbus Communication” on page 18-5
“Modify the Contents of a Holding Register Using a Mask Write” on page 18-18

 maskWrite

19-87

modbus
Create Modbus object

Syntax
m = modbus(Transport,DeviceAddress)
m = modbus(Transport,DeviceAddress,Port)
m = modbus(Transport,DeviceAddress,Name,Value)
m = modbus(Transport,'Port')
m = modbus(Transport,'Port',Name,Value)

Description

Note In R2022a, Modbus functionality has moved from Instrument Control Toolbox™ to Industrial
Communication Toolbox. If you have been a licensed Instrument Control Toolbox user prior to this
release, you might be eligible to continue using Modbus functionality as described in Opt-In Offer for
Instrument Control Toolbox Modbus Users.

m = modbus(Transport,DeviceAddress) constructs a Modbus object, m, over the transport type
Transport using the specified 'DeviceAddress'. When the transport is 'tcpip',
DeviceAddress must be specified as the second argument. DeviceAddress is the IP address or
host name of the Modbus server.

m = modbus(Transport,DeviceAddress,Port) additionally specifies Port. When the transport
is 'tcpip', DeviceAddress must be specified. Port is the remote port used by the Modbus server.
Port is optional, and it defaults to 502, which is the reserved port for Modbus.

m = modbus(Transport,DeviceAddress,Name,Value) specifies additional options with one or
more name-value pair arguments using any of the previous syntaxes. For example, you can specify a
timeout value. The Timeout property specifies the waiting time to complete read and write
operations in seconds, and the default is 10.

m = modbus(Transport,'Port') constructs a Modbus object m over the transport type
Transport using the specified 'Port'. When the transport is 'serialrtu', 'Port' must be
specified. This argument is the serial port the Modbus server is connected to, such as 'COM3'.

m = modbus(Transport,'Port',Name,Value) specifies additional options with one or more
name-value pair arguments using any of the previous syntaxes. For example, you can specify
NumRetries, the number of retries to perform if there is no reply from the server after a timeout.

Examples

Create Object Using TCP/IP Transport

When the transport is TCP/IP, you must specify the IP address or host name of the Modbus server. You
can optionally specify the remote port used by the Modbus server. Port defaults to 502, which is the
reserved port for Modbus.

19 Functions

19-88

https://www.mathworks.com/campaigns/products/modbus-opt-in.html
https://www.mathworks.com/campaigns/products/modbus-opt-in.html

Create the Modbus object m using the host address shown and port of 308.

m = modbus('tcpip', '192.168.2.1', 308)

m =

 Modbus TCPIP with properties:

 DeviceAddress: '192.168.2.1'
 Port: 308
 Status: 'open'
 NumRetries: 1
 Timeout: 10 (seconds)
 ByteOrder: 'big-endian'
 WordOrder: 'big-endian'

The object output shows both the arguments you set and the defaults.

Create Object Using Serial RTU Transport

When the transport is 'serialrtu', you must specify 'Port'. This is the serial port the Modbus
server is connected to.

Create the Modbus object m using the Port of 'COM3'.

m = modbus('serialrtu','COM3')

m =

Modbus Serial RTU with properties:

 Port: 'COM3'
 BaudRate: 9600
 DataBits: 8
 Parity: 'none'
 StopBits: 1
 Status: 'open'
 NumRetries: 1
 Timeout: 10 (seconds)
 ByteOrder: 'big-endian'
 WordOrder: 'big-endian'

The object output shows arguments you set and defaults that are used automatically.

Create Object and Set a Property

You can create the object using a name-value pair to set the properties such as Timeout. The
Timeout property specifies the maximum time in seconds to wait for a response from the Modbus
server, and the default is 10. You can change the value either during object creation or after you
create the object.

For the list and description of properties you can set for both transport types, see “Configure
Properties for Modbus Communication” on page 18-5.

 modbus

19-89

Create a Modbus object using Serial RTU, but increase the Timeout to 20 seconds.

m = modbus('serialrtu','COM3','Timeout',20)

m =

Modbus Serial RTU with properties:

 Port: 'COM3'
 BaudRate: 9600
 DataBits: 8
 Parity: 'none'
 StopBits: 1
 Status: 'open'
 NumRetries: 1
 Timeout: 20 (seconds)
 ByteOrder: 'big-endian'
 WordOrder: 'big-endian'

The object output reflects the Timeout property change.

Input Arguments
Transport — Physical transport layer for device communication
character vector | string

Physical transport layer for device communication, specified as a character vector or string. Specify
transport type as the first argument when you create the modbus object. You must set the transport
type as either 'tcpip' or 'serialrtu' to designate the protocol you want to use.
Example: m = modbus('tcpip','192.168.2.1')
Data Types: char

DeviceAddress — IP address or host name of Modbus server
character vector | string

IP address or host name of Modbus server, specified as a character vector or string. If transport is
TCP/IP, it is required as the second argument during object creation.
Example: m = modbus('tcpip','192.168.2.1')
Data Types: char

Port — Remote port used by Modbus server
502 (default) | double

Remote port used by Modbus server, specified as a double. Optional as a third argument during
object creation if transport is TCP/IP. The default of 502 is used if none is specified.
Example: m = modbus('tcpip','192.168.2.1',308)
Data Types: double

'Port' — Serial port Modbus server is connected to
character vector | string

Serial port Modbus server is connected to, e.g. 'COM1', specified as a character vector or string. If
transport is Serial RTU, it is required as the second argument during object creation.

19 Functions

19-90

Example: m = modbus('serialrtu','COM3')
Data Types: char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

There are a number of name-value pairs that can be used when you create the modbus object,
including the two shown here. Some can only be used with either TCP/IP or Serial RTU, and some can
be used with both transport types. For a list of all the properties and how to set them both during and
after object creation, see “Configure Properties for Modbus Communication” on page 18-5.
Example: m = modbus('serialrtu','COM3','Timeout',20)

Timeout — Maximum time in seconds to wait for a response from the Modbus server
10 (default) | double

Maximum time in seconds to wait for a response from the Modbus server, specified as the comma-
separated pair consisting of 'Timeout' and a positive value of type double. The default is 10. You
can change the value either during object creation or after you create the object.
Example: m = modbus('serialrtu','COM3','Timeout',20)
Data Types: double

NumRetries — Number of retries to perform if there is no reply from the server after a
timeout
double

Number of retries to perform if there is no reply from the server after a timeout, specified as the
comma-separated pair consisting of 'NumRetries' and a positive value of type double. If using the
Serial RTU transport, the message is resent. If using the TCP/IP transport, the connection is closed
and reopened. You can change the value either during object creation, or after you create the object.
Example: m = modbus('serialrtu','COM3','NumRetries',5)
Data Types: double

Version History
Introduced in R2017a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
read | write | writeRead | maskWrite

 modbus

19-91

Topics
“Create a Modbus Connection” on page 18-3
“Configure Properties for Modbus Communication” on page 18-5

19 Functions

19-92

Modbus Explorer
Read and write to Modbus coils and registers

Description
The Modbus Explorer app enables you to read and write to registers through Instrument Control
Toolbox without having to write a MATLAB script.

The Modbus Explorer app offers a user interface to easily set up read and write operations, and a
live plot to see the values. The read table allows you to easily organize and manage reads for multiple
addresses, such as different sensors and switches on a PLC. The app supports a subset of the
MATLAB MATLAB functionality. You can do the following in the Modbus Explorer app:

• Read coils, inputs, input registers, and holding registers. This is the functionality of the Modbus
read function.

• Write to coils and holding registers. This is the functionality of the Modbus write function.

The app does not support the functionality of the Modbus writeRead function or the maskWrite
function.

 Modbus Explorer

19-93

Open the Modbus Explorer App
• MATLAB Toolstrip: On the Apps tab, under Test & Measurement, click the app icon.
• MATLAB command prompt: Enter modbusExplorer.

Examples
• “Configure a Connection in the Modbus Explorer” on page 18-20
• “Read Coils, Inputs, and Registers in the Modbus Explorer” on page 18-23
• “Write to Coils and Holding Registers in the Modbus Explorer” on page 18-26
• “Control a PLC Using the Modbus Explorer” on page 18-28

Version History
Introduced in R2019a

Topics
“Configure a Connection in the Modbus Explorer” on page 18-20
“Read Coils, Inputs, and Registers in the Modbus Explorer” on page 18-23
“Write to Coils and Holding Registers in the Modbus Explorer” on page 18-26
“Control a PLC Using the Modbus Explorer” on page 18-28

19 Functions

19-94

mqttclient
Create MQTT client connected to broker

Description
An icomm.mqtt.Client object represents an MQTT client in MATLAB that connects to an external
MQTT broker.

Creation

Syntax
mqttClient = mqttclient(brokerAddr)
mqttClient = mqttclient(brokerAddr,Name=Value)

Description

mqttClient = mqttclient(brokerAddr) creates an MQTT client connected to the broker
specified by brokerAddr. brokerAddr is a host name or IP address of the MQTT broker including
the connection protocol. Supported protocols include TCP, WS, SSL, and WSS.

mqttClient = mqttclient(brokerAddr,Name=Value) specifies function options and properties
of mqttClient using optional name-value pairs.

Input Arguments

brokerAddr — Location of MQTT broker
string | char

Location of MQTT broker as a URL with protocol, specified as a string or character vector.
Example: "tcp://broker.hivemq.com"
Data Types: string | char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: Port=8883

Name-value arguments can specify the properties Port, ClientID, Timeout, and
KeepAliveDuration; and the following options:

Username — User name for connection to broker
string | char

User name for connection to broker, specified as a string or character vector.

 mqttclient

19-95

Data Types: char | string

Password — User password for connection to broker
string | char

User password for connection to broker, specified as a string or character vector.
Data Types: char | string

CARootCertificate — Server root certificate for broker authentication
string | char

Server root certificate for broker authentication during a secure connection, specified as a string or
character vector.
Data Types: char | string

ClientCertificate — Certificate for client authentication
string | char

Certificate for client authentication during a secure connection, specified as a string or character
vector.
Data Types: char | string

ClientKey — Private key file for client authentication
string | char

Private key file for client authentication, used along with ClientCertificate for authentication
during secure connection.
Data Types: char | string

SSLPassword — Password to decrypt private key
string | char

Password to decrypt the private ClientKey file, specified as a string or character vector.
Data Types: char | string

Properties
Port — Socket port number for connection
integer value

This property is read-only.

Socket port number to use when connecting to the MQTT broker, specified as an integer value.
Example: 8883
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

ClientID — Identifier of client
string | char

This property is read-only.

19 Functions

19-96

Identifier of client for connection to broker, specified as a string or character vector.
Data Types: char | string

Timeout — Time allowed to complete connection
5 (default) | integer value | duration

This property is read-only.

Time allowed for connection to be completed, specified as a numeric integer value in seconds or as a
duration.
Example: Timeout=60
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
duration

KeepAliveDuration — Maximum idle time allowed between broker and client
60 (default) | integer value | duration

This property is read-only.

Maximum idle time allowed between broker and client, specified as a numeric integer value in
seconds or as a duration. If no traffic occurs in this time span, the client issues a keep alive packet.
Example: KeepAliveDuration=minutes(5)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
duration

BrokerAddress — Location of MQTT broker
string | char

This property is read-only.

Location of the MQTT broker, specified as a string or character vector. BrokerAddress identifies the
host name or IP address of the MQTT broker, including connection protocol. Supported protocols
include TCP, WS, SSL, and WSS.
Example: "tcp://broker.hivemq.com"
Data Types: char | string

Subscriptions — Table of topic subscriptions
table

This property is read-only.

Table of topics client is subscribed to.
Data Types: table

Connected — Status of client connection to broker
1 | 0

This property is read-only.

 mqttclient

19-97

Status of the client connection to the broker, returned as logical 1 (connected) or 0 (not connected). If
the Connected status is 0, that might indicate an issue with the broker; check that you have the
correct address, clear the object, and try creating it again.
Example: 1
Data Types: logical

Object Functions
subscribe Subscribe to MQTT topic
unsubscribe Unsubscribe from MQTT topics
read Read available messages from MQTT topic
peek View most recent message from MQTT topic
flush Clear received MQTT messages
write Write message to MQTT topic

Examples

Connect to an MQTT Broker

Create a nonsecure MQTT client connection to a HiveMQ public broker with default settings.

mqttClient = mqttclient("tcp://broker.hivemq.com")

mqttClient =

 Client with properties:

 BrokerAddress: "tcp://broker.hivemq.com"
 Port: 1883
 ClientID: ""
 Timeout: 5
 KeepAliveDuration: 60
 Subscriptions: [0×3 table]
 Connected: 1

Connect with a Specific ID and Port

Create a nonsecure MQTT client connection to a HiveMQ public broker using port 1883 and specify
the client ID as myClient.
mqttClient = mqttclient("tcp://broker.hivemq.com",ClientID="myClient",Port=1883)

mqttClient =

 Client with properties:

 BrokerAddress: "tcp://broker.hivemq.com"
 Port: 1883
 ClientID: "myClient"
 Timeout: 5
 KeepAliveDuration: 60

19 Functions

19-98

 Subscriptions: [0×3 table]
 Connected: 1

Make a Secure Connection over SSL

Create an MQTT client with a secure connection over SSL using certificates for authentication.
Connect the client to the Eclipse Mosquitto™ public broker at port 8884 and specify the broker root
certificate, client certificate, and private key.

mqttClientSSL = mqttclient("ssl://mosquitto.org",Port=8884,...
 CARootCertificate="C:\mqtt\mosquitto.org.pem",...
 ClientCertificate="C:\mqtt\client.pem",...
 ClientKey="C:\mqtt\client.key")

Make a Connection over Websockets

Create an MQTT client connected with websockets to ThingSpeak™. Connecting with the MQTT
interface on ThingSpeak requires ClientID, Username, and Password.
mqttClient = mqttclient("ws://mqtt3.thingspeak.com",Port=80,...
 Username="MyUserID",ClientID="MyClientID",Password="MyPassword")

Version History
Introduced in R2022a

 mqttclient

19-99

obj2mfile
Convert OPC object to MATLAB code

Syntax
obj2mfile(DAObj,'FileName')
obj2mfile(DAObj,'FileName','Syntax')
obj2mfile(DAObj,'FileName','Mode')
obj2mfile(DAObj,'FileName','Syntax','Mode')

Description
obj2mfile(DAObj,'FileName') converts the opcda object DAObj to the equivalent MATLAB code
using the set syntax and saves the MATLAB code to a file specified by FileName. If an extension is
not specified, the .m extension is used. Only those properties that are not set to their default values
are written to FileName.

obj2mfile(DAObj,'FileName','Syntax') converts the OPC object to the equivalent MATLAB
code using the specified 'Syntax' and saves the code to the file, FileName. 'Syntax' can be
either 'set' or 'dot'. By default, 'set' is used.

obj2mfile(DAObj,'FileName','Mode') and
obj2mfile(DAObj,'FileName','Syntax','Mode') save the equivalent MATLAB code for all
properties if 'Mode' is 'all', and save only the properties that are not set to their default values if
'Mode' is 'modified'. By default, 'modified' is used.

If DAObj’s UserData is not empty or if any of the callback properties is set to a cell array of values or
to a function handle, the data stored in those properties is written to a MAT-file when the toolbox
object is converted and saved. The MAT-file has the same name as the file containing the toolbox
object code, but with a different extension.

The values of read-only properties will not be restored. For example, if an object is saved with a
Status property value of 'connected', the object will be recreated with a Status property value
of 'disconnected' (the default value). You can use propinfo to determine if a property is read-
only.

To recreate DAObj, type the name of the file that you previously created with obj2mfile.

Examples
Create a client with a group and an item, then save that client to disk:

da = opcda('localhost','Dummy.Server');
da.Tag = 'myopcTag';
da.Timeout = 300;
grp = addgroup(da,'TestGroup');
itm = additem(grp,'Dummy.Tag1');
obj2mfile(da,'myopc.m','dot','all');

Recreate the client under a different name:

19 Functions

19-100

copyOfDA = myopc;

Version History
Introduced before R2006a

See Also
opchelp | propinfo

 obj2mfile

19-101

opccallback
Event information for OPC callbacks

Syntax
opccallback(Obj,Event)

Description
opccallback(Obj,Event) displays a message in the MATLAB Command Window that contains
information about an OPC event. The message includes the type of event, the time the event
occurred, and the related data for that event.

Obj is the object associated with the event. Event is a structure that contains the Type and Data
fields. Type is the event type. Data is a structure containing event-specific information.

opccallback is an example callback function. Use this callback function as a template for writing
your own callback function. By default, @opccallback is the value for the ReadAsyncFcn,
WriteAsyncFcn, and CancelAsyncFcn properties of a dagroup object, and for the ErrorFcn and
ShutDownFcn properties of an opcda object.

Version History
Introduced before R2006a

See Also
showopcevents

19 Functions

19-102

opcda
Create OPC data access object

Syntax
DAobj = opcda(HostID,ServerID)
DAobj = opcda(HostID,ServerID,Name,Value)

Description
DAobj = opcda(HostID,ServerID) creates an OPC data access object, DAobj, for the host
specified by Host and the OPC server ID specified by ServerID. When you create DAobj, its initial
Status property value is 'disconnected'. To communicate with the server, you must connect
DAobj to the server with the connect function.

DAobj = opcda(HostID,ServerID,Name,Value) creates an OPC DA object, DAobj, for the host
specified by Host and the OPC server ID specified by ServerID, applying the specified property
values. If you specify an invalid property name or value, the function does not create an object.

For a complete listing of OPC functions and properties, type opchelp.

Examples

Create OPC DA Clients

These examples show how to create OPC DA clients for local and remote servers.

Create an OPC DA client for a local server.

daObj1 = opcda('localhost','Dummy.Server.ID');

Create an OPC DA client for a remote server.

daObj2 = opcda('ServerHost1','OPCServer.ID');

Input Arguments
HostID — OPC server host name or IP address
char | string

OPC server host name or IP address, specified as a character vector or string.
Example: 'localhost'
Data Types: char | string

ServerID — OPC server ID
char | string

OPC server ID, specified as a character vector or string.

 opcda

19-103

Example: 'OPCsrvhost'
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

The property name-value pairs can be any format that the set function supports, i.e., name-value
pairs, structures, and name-value cell array pairs. You can specify the writeable properties described
in “Output Arguments” on page 19-104, including the following.
Example: 'Timeout',60

Timeout — Maximum time to wait for completion of instruction to server
10 (default)

Maximum time to wait for completion of instruction to server, specified in seconds.
Example: 60
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

UserData — Data to associate with object
any MATLAB data type

Data to associate with object, specified as any MATLAB data type. UserData stores any data that you
want to associate with the object. The object does not use this data directly, but you can use the data
for identification or other purposes.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | struct | string | cell

Output Arguments
DAobj — OPC DA client
opcda object

OPC DA client, returned as an opcda object, with the properties described in opcda Object Properties
Properties.

For information on any of these properties, type opchelp opcda.PropName, for example:

opchelp opcda.TimerPeriod

Version History
Introduced before R2006a

19 Functions

19-104

See Also
Functions
connect | opchelp | set

Properties
opcda Object Properties Properties

Topics
“Configure OPC Data Access Object Properties” on page 6-13

 opcda

19-105

OPC Data Access Explorer
Explore and exchange data with OPC Data Access servers

Description
The OPC Data Access Explorer allows you to graphically browse the contents of an OPC server,
view server item properties, and create and configure OPC clients, groups, and items in the toolbox.

After browsing, discovery, and configuration, the app allows you to:

• Read and write OPC data.
• Configure and start a logging session, and export logged data to the workspace.
• Export clients, groups, and items to the workspace, to a MAT-file, or as an OPC session file which

you can import into the app at a later stage.

Open the OPC Data Access Explorer App
• MATLAB Toolstrip: On the Apps tab, under Test and Measurement, click the app.
• MATLAB command prompt: Enter opcDataAccessExplorer.

Examples
• “Access Data with the OPC Data Access Explorer” on page 3-2

Programmatic Use
opcDataAccessExplorer opens the OPC Data Access Explorer app.

19 Functions

19-106

opcDataAccessExplorer('SessionName') opens the OPC Data Access Explorer app and loads
a previously saved OPC session file.

Version History
Introduced before R2006a

Topics
“Access Data with the OPC Data Access Explorer” on page 3-2

 OPC Data Access Explorer

19-107

opc.daQualityString
OPC data access part of quality ID

Syntax
[MajorStr,SubStr,LimitStr] = opc.daQualityString(IDs)

Description
[MajorStr,SubStr,LimitStr] = opc.daQualityString(IDs) converts the data access (DA)
portion of the OPC quality attribute in IDs to the major quality text MajorStr, substatus text
SubStr, and limit text LimitStr.

If IDs is a vector, each of MajorStr, SubStr, and LimitStr is a cell array the same size as IDs.

Examples
Load the OPC HDA example data file and find the qualities of the time stamp union of
hdaDataSmall:

load opcSampleHdaData;
newObj = tsunion(hdaDataSmall);
[majorStr, subStr, limitStr] = opc.daQualityString(newObj.Quality);

Version History
Introduced in R2011a

See Also
opc.hdaQualityString | opcqstr

19 Functions

19-108

opc.daSupport
OPC data access troubleshooting utility

Syntax
opc.daSupport('localhost')
opc.daSupport('HostName')
opc.daSupport('HostName','FileName')
opc.daSupport('HostName',Fid)
outFile = opc.daSupport(___)

Description
opc.daSupport('localhost') returns diagnostic information for all OPC data access servers
installed on the local machine, and saves the output text to the file opcsupport.txt in the current
folder. Then the file opens in the editor for viewing.

opc.daSupport('HostName') returns diagnostic information for the OPC servers installed on the
host with name HostName, and saves the output text to the file opcsupport.txt in the current
folder. Then the file opens in the editor for viewing.

opc.daSupport('HostName','FileName') returns diagnostic information for the host with the
name HostName, and saves the output text to the file FileName in the current folder. Then the file
opens in the editor for viewing.

opc.daSupport('HostName',Fid) appends its output information to the file already opened with
fopen. The Fid argument must be a valid file identifier.

outFile = opc.daSupport(___) returns the full path to the generated file and does not open the
file in the editor for viewing.

Examples

Get Diagnostics for All Servers on the Local Machine

opc.daSupport('localhost')

Get Diagnostics for All Servers on Specified Machine

opc.daSupport('area1')

 opc.daSupport

19-109

Save Diagnostic Information to Specified File

opc.daSupport('area1','myfile.txt')

Input Arguments
'HostName' — Machine hosting OPC server
'localhost' | other character vector or string

Machine hosting OPC servers, specified as a character vector or string.
Data Types: char | string

'FileName' — File name for output text
'opcsupport.txt' (default)

File name for output text, specified as a character vector or string.
Data Types: char | string

Fid — File identifier for open output file
file identifier for the open output file, set by the MATLAB fopen function
Example: Fid = fopen('MyOPCSupport.txt')

Output Arguments
outFile — Path to file of results
character vector

Path to file of results, returned as a character vector.

Version History
Introduced in R2013a

See Also
Functions
opcserverinfo | opc.hdaSupport | opcda

19 Functions

19-110

opcfind
Find OPC objects with specific properties

Syntax
Out = opcfind
Out = opcfind('P1',V1,'P2',V2,...)
Out = opcfind(S)

Description
Out = opcfind returns a cell array, Out, of all existing OPC objects.

Out = opcfind('P1',V1,'P2',V2,...) returns a cell array, Out, of toolbox objects whose
property values match those passed as property name/property value pairs, P1, V1, P2, V2, etc.

Out = opcfind(S) returns a cell array, Out, of toolbox objects whose property values match those
defined in structure S. The field names of S are object property names and the field values of S are
the requested property values.

Examples
Create some OPC objects:

da1 = opcda('localhost','Dummy.ServerA');
da2 = opcda('localhost','Dummy.ServerB');
da1.Tag = 'myopcTag';
da1.Timeout = 300;
grp = addgroup(da2,'TestGroup');
itm = additem(grp,{'Dummy.Tag1','Dummy.Tag2'});

Find all OPC objects:

allObjCell = opcfind;

Find all objects with the Tag 'myopcTag':

myOPC = opcfind('Tag','myopcTag')

Find all daitem objects:

itmCell = opcfind('Type','daitem')

Version History
Introduced in R2006a

See Also
delete

 opcfind

19-111

opc.getDateDisplayFormat
Format for date display of OPC objects

Syntax
fmt = opc.getDateDisplayFormat

Description
fmt = opc.getDateDisplayFormat returns the current date display format for OPC HDA data
objects. The date display format persists across MATLAB sessions.

Examples
Get the current date display format for OPC objects:

fmt = opc.getDateDisplayFormat

Version History
Introduced in R2011a

See Also
opc.setDateDisplayFormat

19 Functions

19-112

opchda
Create OPC historical data access client

Syntax
hdaObj = opchda(SIObj)
hdaObj = opchda(Hostname,ServerID)
hdaObj = opchda(Hostname,ServerID,Name,Value)
hdaObj = opchda(SIObj,Name,Value)

Description
hdaObj = opchda(SIObj) constructs an OPC HDA client object, hdaObj, for the information
provided in the OPC HDA ServerInfo object, SIObj, obtained from an opchdaserverinfo function
call.

hdaObj = opchda(Hostname,ServerID) constructs hdaObj for the host specified by Hostname
and the OPC server ID specified by ServerID.

When you construct hdaObj, its initial Status property value is 'disconnected'. To communicate
with the server, connect hdaObj to the server using the connect function.

hdaObj = opchda(Hostname,ServerID,Name,Value) applies the specified property values to
the client created with the Host and ServerID parameters. If you specify an invalid property name
or value, the function does not create an object.

hdaObj = opchda(SIObj,Name,Value) applies the specified property values to the client created
with the ServerInfo object, SIObj. If you specify an invalid property name or value, the function does
not create an object.

Examples

Create Client Object for a Specific Server

Create an OPC HDA client object for a specific client on the local host.

hdaObj = opchda('localhost','MyHDAServer.1');

Create Client Objects for All Servers

Create OPC HDA client objects for all clients on the local host.

 opchda

19-113

SIObj = opchdaserverinfo('localhost');
hdaObj = opchda(SIObj);

Input Arguments
SIObj — OPC HDA server information
OPC HDA ServerInfo object

OPC HDA server information, specified as an OPC HDA ServerInfo object. This object is returned
from the function opchdaserverinfo.
Example: SIOjb = opchdaserverinfo

Hostname — OPC HDA server host name
character vector or string

OPC HDA server host name specified as a character vector or string.
Example: 'host-name'
Data Types: char | string

ServerID — Identifier of OPC HDA server
character vector or string

Identifier of OPC HDA server, specified as a character vector or string.
Example: 'MyHDAServer.1'
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

The argument name identifies a property of the created OPC HDA client object. Note that the name-
value pairs can be any format that the set function supports, i.e., name-value pairs, structures, and
name-value cell array pairs.
Example: 'Timeout',60

Timeout — Maximum time to wait for completion of instruction to server
10 (default)

Maximum time to wait for completion of instruction to server, specified in seconds.
Example: 60
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

UserData — Data to associate with object
any MATLAB data type

19 Functions

19-114

Data to associate with object, specified as any MATLAB data type. UserData stores any data that you
want to associate with the object. The object does not use this data directly, but you can use the data
for identification or other purposes.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | struct | string | cell

Output Arguments
hdaObj — OPC HDA client
OPC HDA client object

OPC HDA client, returned as an OPC HDA client object.

Version History
Introduced in R2013a

See Also
Functions
opchdaserverinfo

 opchda

19-115

opc.hda.Client
Package: opc.hda

Create OPC historical data access client

Syntax
hdaObj = opc.hda.Client(SIObj)
hdaObj = opc.hda.Client(Host, ServerID)
hdaObj = opc.hda.Client(Host, ServerID, 'P1', V1, 'P2', V2, ...)
hdaObj = opc.hda.Client(SIObj, 'P1', V1, 'P2', V2, ...)

Description
hdaObj = opc.hda.Client(SIObj) constructs an OPC HDA client object hdaObj for the
information provided in the OPC HDA ServerInfo object SIObj obtained from a getServerInfo
function call.

hdaObj = opc.hda.Client(Host, ServerID) constructs an OPC HDA client object, hdaObj, for
the host specified by Host and the OPC server ID specified by ServerID. When you construct
hdaObj, its initial Status property value is 'disconnected'. To communicate with the server, you
must connect hdaObj to the server with the connect function.

hdaObj = opc.hda.Client(Host, ServerID, 'P1', V1, 'P2', V2, ...) applies the
specified property values to the client created with the Host and ServerID parameters. If you
specify an invalid property name or value, the function does not create an object.

hdaObj = opc.hda.Client(SIObj, 'P1', V1, 'P2', V2, ...) applies the specified
property values to the client created with the ServerInfo object SIObj. If you specify an invalid
property name or value, the function does not create an object. Note that the property name/property
value pairs can be any format that the set function supports, i.e., name-value pairs, structures, and
name-value cell array pairs.

The OPC HDA client class is responsible for managing connections to an OPC Historical Data Access
server. Using the client, you can browse the server's name space, read attributes of items, and read
raw or processed data from items on the server.

Examples
Create an HDA client for the Matrikon Simulation Server:

hdaObj = opc.hda.Client('localhost', 'Matrikon.OPC.Simulation');

Browse the local host for OPC HDA servers and create a client from the first server found:

siObj = opc.getServerInfo('localhost');
hdaObj = opc.hda.Client(siObj(1));

19 Functions

19-116

Version History
Introduced in R2011a

See Also
connect | disconnect | opchda | opchdaserverinfo

 opc.hda.Client

19-117

opc.hda.getServerInfo
Query host for installed HDA servers

Description
S = opc.hda.getServerInfo('HostName') queries the host named HostName for the OPC HDA
servers installed on that host. 'HostName' can be a host name, or IP address.

S is returned as a vector of OPC HDA ServerInfo objects, containing the following read-only
properties.

Property Name Description
Host The host name passed to getServerInfo
ServerID The programmatic Server ID to use when constructing an HDA

Client object associated with the server
Description A text description of the server
HDASpecification A character vector denoting the HDA specification supported.

Currently, only 'HDA1' will be returned in this property.

Using the ServerInfo objects in S, you can find a particular server based on the Description
property using findDescription(S, 'StartText'), or you can construct a client by passing the
relevant element of S to the opchda function.

Version History
Introduced in R2011a

See Also
opchda

19 Functions

19-118

opc.hdaQualityString
OPC historical data access part of quality ID

Syntax
QStr = opc.hdaQualityString(IDs)

Description
QStr = opc.hdaQualityString(IDs) converts the HDA portion of the OPC quality text in IDs.

If IDs is a vector, QStr is a cell array of character vectors, the same size as IDs.

Examples
Load the OPC HDA example data file and find the HDA qualities of the time stamp union of
hdaDataSmall:

load opcSampleHdaData;
newObj = tsunion(hdaDataSmall);
hdaQStr = opc.hdaQualityString([newObj.Quality]);

Version History
Introduced in R2011a

See Also
opc.daQualityString

 opc.hdaQualityString

19-119

opc.hda.reset
Package: opc.hda

Disconnect and delete all OPC HDA client objects

Syntax
opc.hda.reset

Description
opc.hda.reset disconnects and deletes all OPC HDA Client objects. Note that all objects, including
those in private work spaces, will be disconnected and deleted when calling this function.

You cannot reconnect an OPC HDA Client object to the server after it has been deleted. Therefore,
you should remove it from the workspace with the clear function.

Note that opc.hda.reset has no influence over OPC Data Access objects. Delete those objects
using opcreset.

Examples
Create an OPC HDA Client, delete the object using opc.hda.reset, and clear the variable from the
workspace:

hdaObj = opchda('localhost','Matrikon.OPC.Simulation');
opc.hda.reset;
clear hdaObj

Version History
Introduced in R2011a

See Also
clear | connect | delete

19 Functions

19-120

opchdaserverinfo
Query host for installed HDA servers

Description
S = opchdaserverinfo('HostName') queries the host named HostName for the OPC HDA
servers installed on that host. 'HostName' can be a host name, or IP address, specified as a
character vector or string.

S is returned as a vector of OPC HDA ServerInfo objects, containing the following read-only
properties.

Property Name Description
Host The host name passed to getServerInfo
ServerID The programmatic Server ID to use when constructing an HDA

Client object associated with the server
Description A text description of the server
HDASpecification A character vector denoting the HDA specification supported.

Currently, only 'HDA1' is returned in this property.

Using the ServerInfo objects in S, you can find a particular server based on the Description
property using findDescription(S,'StartText'), or you can construct a client by passing the
relevant element of S to the opchda function.

Examples
Find a list of HDA servers on the local host.

sInfo = opchdaserverinfo('localhost');

Locate the specific server with a description containing the character vector 'Matrikon'.

mIndex = findDescription(sInfo,'Matrikon')

Construct an OPC HDA client for that server.

hdaClient = opchda(sInfo(mIndex))

Version History
Introduced in R2014a

See Also
opchda

 opchdaserverinfo

19-121

opc.hdaSupport
OPC HDA troubleshooting utility

Syntax
opc.hdaSupport('localhost')
opc.hdaSupport('HostName')
opc.hdaSupport('HostName','FileName')
opc.hdaSupport('HostName',Fid)
outFile = opc.hdaSupport(___)

Description
opc.hdaSupport('localhost') returns diagnostic information for all OPC HDA servers installed
on the local machine, and saves the output text to the file opcsupport.txt in the current folder.
Then the file opens in the editor for viewing.

opc.hdaSupport('HostName') returns diagnostic information for the OPC HDA servers installed
on the host with name HostName, and saves the text output to the file, opcsupport.txt in the
current directory. Then the file opens in the editor for viewing.

opc.hdaSupport('HostName','FileName') saves the text output to the file FileName in the
current folder. Then the file opens in the editor for viewing.

opc.hdaSupport('HostName',Fid) appends the output information to the file already opened
with fopen. The Fid argument must be a valid file identifier.

outFile = opc.hdaSupport(___) returns the full path to the generated file and does not open
the file in the editor for viewing. This syntax can use any input arguments previously listed in earlier
syntaxes.

Examples

Get Diagnostics for All Servers on the Local Machine

opc.hdaSupport('localhost')

Get Diagnostics for All Servers on Specified Machine

opc.hdaSupport('area1')

19 Functions

19-122

Save Diagnostic Information to Specified File

opc.hdaSupport('area1','myfile.txt')

Input Arguments
'HostName' — Machine hosting OPC server
'localhost' | other character vector or string

Machine hosting OPC servers, specified as a character vector or string.
Data Types: char | string

'FileName' — File for output text
'opcsupport.txt' (default)

File for output text, specified as a character vector or string.
Data Types: char | string

Fid — File identifier for open output file
file identifier for open output file, set by the MATLAB fopen function
Example: Fid = fopen('MyOPCSupport.txt')

Output Arguments
outFile — Path to file of results
character vector

Path to file of results, returned as a character vector.

Version History
Introduced in R2013a

See Also
Functions
opcserverinfo | opc.daSupport | opchda

 opc.hdaSupport

19-123

opchelp
Help for OPC data access function or property

Syntax
opchelp
opchelp('Name')
Out = opchelp('Name')
opchelp(Obj)
opchelp(Obj,'Name')
Out = opchelp(Obj,'Name')

Description
opchelp displays a listing of OPC data access functions with a brief description of each function.

opchelp('Name') displays online help for the function or property, Name. If Name is a class, a
complete listing of the functions and properties for that class is displayed with a brief description of
each. The online help for the object constructor for that class is also displayed. If Name is a class with
the .m extension, then only the online help for the object constructor is displayed.

You can display object-specific function information by specifying Name to be object/function. For
example, to display the online help for the data access object's connect function, Name would be
'opcda/connect'.

You can display object-specific property information by specifying Name to be object.property. For
example, to display the online help for the data access object's Status property, Name would be
'opcda.Status'.

Out = opchelp('Name') returns the help text to the variable Out.

opchelp(Obj) displays a complete listing of functions and properties for the OPC object Obj, along
with the online help for the object constructor.

opchelp(Obj,'Name') displays the help for function or property, Name, for the toolbox object Obj.

Out = opchelp(Obj,'Name') returns the help text to the variable Out.

When displaying property help in the command window, the names in the “See also” section that
contain all uppercase letters are function names. The names that contain a mixture of uppercase and
lowercase letters are property names.

When displaying function help, the “See also” section contains only function names.

Examples
Display all OPC data access functions and a brief description of each function.

opchelp

Display help on the opcda constructor.

19 Functions

19-124

daHelp = opchelp('opcda')

Display help on the OPC set function.

opchelp set

Display help on the opcda object disconnect function.

opchelp opcda/disconnect

Create an opcda object and query help information on that object. Get the help for the Timeout and
Status properties.

da = opcda('localhost','Matrikon.OPC.Simulation');
opchelp(da)
timeoutHelp = opchelp(da,'Timeout');
opchelp(da,'Status');

Version History
Introduced before R2006a

See Also
Functions
propinfo

 opchelp

19-125

opcqid
Construct quality ID from item quality

Syntax
QualityID = opcqid(QualityStr)

Description
QualityID = opcqid(QualityStr) returns the quality ID, which is a number between 0 and 255,
corresponding to the specified quality attribute. The quality must be a character vector or string in
the form 'Major Quality: Quality Sub-status (Limit Status)'.

If QualityStr is an array of quality values, then QualityID will be a matrix having the same size as
QualityStr.

For more information on quality values, see “OPC Quality” on page A-2.

Examples
Construct the quality ID from the quality text of the item Random.Real8 on the Matrikon OPC
Simulation Server:

da = opcda('localhost','Matrikon.OPC.Simulation');
connect(da)
grp = addgroup(da);
itm = additem(grp,'Random.Real8');
qualityID = opcqid(itm.Quality)

Version History
Introduced in R2007b

See Also
Functions
get | opcqstr

19 Functions

19-126

opcqparts
Extract quality parts from OPC quality ID

Syntax
[MajorQual,Substatus,Limit,Vendor] = opcqparts(QualityID)

Description
[MajorQual,Substatus,Limit,Vendor] = opcqparts(QualityID) extracts the major quality,
the quality substatus, the limit status, and the vendor-specific quality information fields, given the
daitem object QualityID property value.

The QualityID is a double value ranging from 0 to 65535, made up of four parts. The high 8 bits of
the QualityID represent the vendor-specific quality information. The low 8 bits are arranged as
QQSSSSLL, where QQ represents the major quality, SSSS represents the quality substatus, and LL
represents the limit status.

For more information on quality values, see “OPC Quality” on page A-2.

Examples
Extract the major quality, substatus, and limit status of the item Random.Qualities on the Matrikon
OPC Simulation Server:

da = opcda('localhost','Matrikon.OPC.Simulation');
connect(da)
grp = addgroup(da);
itm = additem(grp,'Random.Qualities');
[quality,substatus,limit] = opcqparts(itm.QualityID)

Version History
Introduced before R2006a

See Also
Functions
get | opcqstr

 opcqparts

19-127

opcqstr
Convert OPC quality ID into readable text

Syntax
QualityStr = opcqstr(QualityID)

Description
QualityStr = opcqstr(QualityID) constructs a quality character vector from a quality ID,
stored in the QualityID property of a daitem object. The character vector is of the form 'Major
Quality: Quality Substatus: Limit Status'. The Limit Status part is omitted if the limit
status is set to Not Limited. For information on each of the quality parts, see opcqparts.

If QualityID is specified as a vector or matrix of quality IDs, then QualityStr will be a cell array
having the same size as QualityID.

For more information on quality values, see “OPC Quality” on page A-2.

Examples
Construct the quality character vector from the quality ID of the item Random.Qualities on a
Matrikon OPC Simulation Server:

da = opcda('localhost','Matrikon.OPC.Simulation');
connect(da)
grp = addgroup(da);
itm = additem(grp,'Random.Qualities');
qualitystr = opcqstr(itm.QualityID)

Version History
Introduced before R2006a

See Also
Functions
get | opcqid | opcqparts

19 Functions

19-128

opcread
Read logged records from disk to MATLAB workspace

Syntax
S = OPCREAD('LogFileName')
S = opcread('LogFileName','PropertyName','PropertyValue',...)
TSCell = opcread('LogFileName','DataType','timeseries')
[I,V,Q,TS,ET] = opcread('LogFileName','DataType',DType,...)

Description
S = OPCREAD('LogFileName') returns all available records from the OPC log file named
LogFileName. If no extension is specified as part of LogFileName, then .olf is used.

S is an NRec-by-1 structure array, where NRec is the number of records returned. S contains the
fields 'LocalEventTime' and 'Items'. LocalEventTime is a date vector corresponding to the
local event time for that record. Items is an NItems-by-1 structure array containing the fields show
below.

Field Name Description
ItemID The fully qualified item ID, as a character vector.
Value The data value. The data type is dependent on the original Item's DataType

property.
Quality The data quality, as a character vector.
TimeStamp The time the value was changed, as a date vector.

S = opcread('LogFileName','PropertyName','PropertyValue',...) limits the data read
from the specified OPC log file based on the properties and values provided. Valid property names
and property values are defined in the table below.

Property Name Property Value
'Records' Specify the required records as [startRec endRec]. If no records fall

within those bounds, opcread returns empty outputs.
'Dates' Specify the date range for records as [startDt endDt]. The dates must

be in MATLAB date number format. If no records fall within those bounds,
opcread returns empty outputs.

'ItemIDs' Specify the required item IDs as a character vector, string, or array. If no
records match the required ItemIDs, OPCREAD returns empty outputs.

TSCell = opcread('LogFileName','DataType','timeseries') assigns the data received
from the OPC log file to a cell array of time series objects. TSCell contains as many time series
objects as there are items in the group, with the name of each time series object set to the item ID.
The quality value stored in the time series object is offset from the quality value returned by the OPC
server by 128. The quality displayed by each is the same. Because each record logged might not
contain information for every item, the time series objects have only as many data points as there are
records containing information about that particular item ID.

 opcread

19-129

[I,V,Q,TS,ET] = opcread('LogFileName','DataType',DType,...) assigns the data
retrieved from the OPC log file to separate arrays. Valid data types for DType are 'double',
'single', 'int8', 'int16', 'int32', 'uint8', 'uint16', 'uint32', 'logical',
'currency', 'date', and 'cell'.

I is a 1-by-NItem cell array of item names.

V is an NRec-by-NItem array of values with the data type specified. If a data type of 'cell' is
specified, V is a cell array containing data in the returned data type for each item. Otherwise, V is a
numeric array of the specified data type.

Note DType must be set to 'cell' when retrieving records containing character vectors or arrays
of values.

Q is an NRec-by-NItem array of quality character vectors for each value in V.

TS is an NRec-by-NItem array of MATLAB date numbers representing the time when the relevant
value and quality were stored on the OPC server.

ET is an NRec-by-1 array of MATLAB date numbers, corresponding to the local event time for each
record.

Each record logged may not contain information for every item returned, since data for that item may
not have changed from the previous update. When data is returned as a numeric matrix, the missing
item columns for that record are filled as follows.

V The corresponding value entry is set to the previous value of that item, or to NaN if
there is no previous value.

Q The corresponding quality entry is set to 'Repeat'.
TS The corresponding time stamp entry is set to the first valid time stamp for that record.

Examples
Configure and start a logging task. Wait for the task to complete.

da = opcda('localhost','Matrikon.OPC.Simulation');
connect(da);
grp = addgroup(da,'ExOPCREAD');
itm1 = additem(grp,'Triangle Waves.Real8');
itm2 = additem(grp,'Saw-Toothed Waves.Int2');
grp.LoggingMode = 'disk';
grp.RecordsToAcquire = 30;
grp.LogFileName = 'ExOPCREAD.olf';
start(grp);
wait(grp);

Retrieve the first two records into a structure:

s = opcread('ExOPCREAD.olf','Records',[1, 2]);

Retrieve all the data and plot it with a legend:

[itmID,val,qual,tStamp] = opcread('ExOPCREAD.olf', ...
 'DataType','double');

19 Functions

19-130

plot(tStamp(:,1),val(:,1),tStamp(:,2),val(:,2));
legend(itmID);
datetick x keeplimits

Version History
Introduced before R2006a

See Also
flushdata | getdata | peekdata | start | stop

 opcread

19-131

opcregister
Install and register OPC Foundation core components

Syntax
opcregister
opcregister('repair')
opcregister('remove')
opcregister(..., '-silent')

Description
opcregister installs the OPC Foundation core components so that the toolbox is able to
communicate with OPC servers.

opcregister('repair') repairs an existing OPC Foundation core components installation. Use
this option if you are experiencing problems querying hosts with the opcserverinfo function.

opcregister('remove') removes all OPC Foundation core components from your workstation.
Use this option if you no longer need to access any servers using OPC.

opcregister(..., '-silent') runs the selected option without prompting you for confirmation,
and without showing any progress dialog. Note that your machine might be restarted without
prompting you if you choose this option. If you are concerned about restarting your machine, do not
use the '-silent' option.

Note You must clear any OPC objects that you have previously created in this MATLAB session
before you can run opcregister. If you attempt to run opcregister and any OPC objects already
exist, an error is generated. Use opcreset to clear objects from the MATLAB session.

OPC Foundation core components are redistributed under license from the OPC Foundation,
https://opcfoundation.org.

Examples

Install the OPC Foundation Core Components

Install the OPC Foundation core components on your local workstation.

opcregister

Remove the OPC Foundation Core Components

Remove the OPC Foundation core components on your local workstation.

19 Functions

19-132

https://opcfoundation.org

opcregister('remove')

Version History
Introduced before R2006a

See Also
opcreset | opcserverinfo | opchdaserverinfo | opcsupport | opcfind

 opcregister

19-133

opcreset
Disconnect and delete all OPC objects

Syntax
opcreset
opcreset -force

Description
opcreset disconnects and deletes all OPC objects. This command flushes any data stored in the
buffer, cancels all asynchronous operations, and closes any open log files.

You cannot reconnect a toolbox object to the server after you delete the object. Therefore, you should
remove these objects from the workspace with the clear function.

Note that you cannot call opcreset if an OPC Data Access Explorer session is open, or if Simulink
models containing OPC blocks are open. Before calling opcreset, close all OPC Data Access
Explorer sessions and all open Simulink models containing OPC blocks.

opcreset -force closes all OPC Data Access Explorer sessions and all Simulink models containing
OPC blocks, without prompting to save those sessions and models. If you use the -force option, you
lose any unsaved changes to those sessions and models. Use the -force option only as a last resort.

Examples
Create an opcda object, and add a group to that object. Then delete the OPC objects using
opcreset, and clear all variables from the workspace.

da = opcda('localhost','Dummy.Server');
grp = addgroup(da);
opcreset; % Deletes all objects
% Clear the variables
clear da grp
opcfind

Version History
Introduced before R2006a

See Also
clear | delete | opcfind

19 Functions

19-134

opcserverinfo
Version, server, and status information

Syntax
Out = opcserverinfo
Out = opcserverinfo('Host')
Out = opcserverinfo(DAObj)

Description
Out = opcserverinfo returns a structure that contains information about installed OPC
components, including product version numbers.

Out = opcserverinfo('Host') returns a structure that contains OPC server information
associated with the host name or IP address specified by Host. The information includes the
ServerID you can use to create a client associated with that server, and other information about each
server.

Out = opcserverinfo(DAObj) returns a structure that contains information about the server
associated with the opcda object DAObj. DAObj must be a scalar, and must be connected to the
server. The information includes the current server status and time information related to the server.

Examples
Retrieve information about servers installed on the local machine:

opcserverinfo('localhost')

Retrieve information about the Matrikon Simulation Server installed on the local host:

da = opcda('localhost', 'Matrikon.OPC.Simulation');
connect(da);
matrikonInfo = opcserverinfo(da)

Version History
Introduced before R2006a

See Also
connect | opcda

 opcserverinfo

19-135

opc.setDateDisplayFormat
Set format for date display of OPC objects

Syntax
opc.setDateDisplayFormat(DateFmt)
opc.setDateDisplayFormat('default')
NewFmt = opc.setDateDisplayFormat(...)

Description
opc.setDateDisplayFormat(DateFmt) sets the date display format for OPC HDA data objects to
DateFmt. DateFmt can be any date format number, character vector, or string as defined by
datestr. The date display format persists across MATLAB sessions.

opc.setDateDisplayFormat('default') resets the date display format to the character vector
'yyyy-mm-dd HH:MM:SS.FFF'.

NewFmt = opc.setDateDisplayFormat(...) sets the date display format and returns the new
date display format in NewFmt.

Examples
Load the OPC HDA example data set and show the values of one of the loaded variables.

load opcSampleHdaData;
hdaDataSmall(1).showValues

Set the date display format to show time only, and display the values again.

opc.setDateDisplayFormat('HH:MM:SS');
hdaDataSmall(1).showValues

Reset the display format to the default.

dFmt = opc.setDateDisplayFormat('default')

Version History
Introduced in R2011a

See Also
Functions
opc.getDateDisplayFormat

19 Functions

19-136

opcstruct2array
Convert OPC data from structure to array format

Syntax
[ItmID,Val,Qual,TStamp,EvtTime] = opcstruct2array(S)
[ItmID,Val,Qual,TStamp,EvtTime] = opcstruct2array(S,'DataType')

Description
[ItmID,Val,Qual,TStamp,EvtTime] = opcstruct2array(S) converts the OPC data structure
S into separate arrays for the item ID, value, quality, time stamp, and event time. S must be a
structure as returned by the getdata and opcread functions. S must contain the fields
LocalEventTime and Items. The Items field of S must contain the fields ItemID, Value,
Quality, and TimeStamp.

ItmID is a 1-by-nItm cell array containing the item IDs of all unique items found in the ItemID field
of the Items structures in S.

Val is an nRec-by-nItm array of doubles containing the value of each item in ItmID, at each time
specified by TStamp.

Qual is an nRec-by-nItm cell array of character vectors containing the quality of each value in Val.

TStamp is an nRec-by-nItm array of doubles containing the time stamp for each value in Val.

EvtTime is nRec-by-1 array of doubles containing the local time each data change event occurred.

Each row of Val represents data from one record received at the corresponding entry in EvtTime,
while each column of Val represents the time series for the corresponding item ID in ItmID.

[ItmID,Val,Qual,TStamp,EvtTime] = opcstruct2array(S,'DataType') uses the data type
specified by the character vector 'DataType' for the value array. Valid data types are 'double',
'single', 'int8', 'int16', 'int32', 'uint8', 'uint16', 'uint32', 'logical',
'currency', 'date', and 'cell'.

Examples
Configure and start a logging task for 30 seconds of data:

da = opcda('localhost', 'Matrikon.OPC.Simulation');
connect(da);
grp = addgroup(da, 'ExOPCREAD');
itm1 = additem(grp, 'Triangle Waves.Real8');
itm2 = additem(grp, 'Saw-Toothed Waves.Int2');
grp.LoggingMode = 'memory';
grp.UpdateRate = 0.5;
grp.RecordsToAcquire = 60;
start(grp);
wait(grp);

 opcstruct2array

19-137

Retrieve the records into a structure:

s = getdata(grp);

Convert the structure into a double array and plot it with a legend:

[itmID, val, qual, tStamp] = opcstruct2array(s,'double');
plot(tStamp(:,1), val(:,1), tStamp(:,2), val(:,2));
legend(itmID);
datetick x keeplimits

Version History
Introduced before R2006a

See Also
getdata | opcread

19 Functions

19-138

opcstruct2timeseries
Convert OPC data from structure to time series format

Syntax
TS = opcstruct2timeseries(S)

Description
TS = opcstruct2timeseries(S) converts the OPC data structure S into a cell array of time
series objects. S must be a structure in the format that the getdata and opcread functions return. S
must contain the fields LocalEventTime and Items. The Items field of S must contain the fields
ItemID, Value, Quality, and TimeStamp.

The cell array TS contains as many time series objects as there are unique item IDs in the data
structure, with the name of each time series object indicating the item ID. The time series object
contains the quality, although this value is offset by 128 from the quality value that the OPC server
returns. However, the qualities are the same. Because each logged record might not contain
information for every item, the time series objects have only as many data points as there are records
containing information about that particular item ID.

Examples
Configure and start a logging task for 30 seconds of data:

da = opcda('localhost', 'Matrikon.OPC.Simulation');
connect(da);
grp = addgroup(da, 'ExOPCREAD');
itm1 = additem(grp, 'Triangle Waves.Real8');
itm2 = additem(grp, 'Saw-Toothed Waves.Int2');
grp.LoggingMode = 'memory';
grp.UpdateRate = 0.5;
grp.RecordsToAcquire = 60;
start(grp);
wait(grp);

Retrieve the records into a structure:

s = getdata(grp);

Convert the structure into time series objects and plot each separately:

ts = opcstruct2timeseries(s);
subplot(2,1,1); plot(ts{1});
subplot(2,1,2); plot(ts{2});

Version History
Introduced in R2007b

 opcstruct2timeseries

19-139

See Also
Functions
getdata | opcread | opcstruct2array

Topics
“Time Series Objects and Collections”

19 Functions

19-140

opcsupport
OPC troubleshooting utility

Syntax
opcsupport('localhost')
opcsupport('HostName')
opcsupport('HostName','FileName')
opcsupport('HostName','FileName','da')
opcsupport('HostName','FileName','hda')
outFile = opcsupport(___)

Description
opcsupport('localhost') returns diagnostic information for all OPC servers installed on the
local machine, and saves the output text to the file opcsupport.txt in the current folder. This file is
then opened in the editor for viewing.

opcsupport('HostName') returns diagnostic information for the OPC servers installed on the host
with name HostName, and saves the text output to the file, opcsupport.txt in the current
directory. This file is then opened in the editor for viewing.

opcsupport('HostName','FileName'), returns diagnostic information for the OPC servers
installed on the host with name HostName, and saves the text output to the file FileName in the
current folder. This file is then opened in the editor for viewing.

opcsupport('HostName','FileName','da') or opcsupport('HostName','FileName',
'hda') restricts information gathered from the servers on HostName to only data access ('da') or
to only historical data access ('hda').

outFile = opcsupport(___) returns the full path to the generated file and does not open the file
in the editor for viewing.

Examples

Get diagnostics for all servers on the local machine

opcsupport('localhost')

Get diagnostics for all servers on specified machine

opcsupport('area1')

 opcsupport

19-141

Save diagnostic information to specified file

opcsupport('area1','myfile.txt')

Input Arguments
'HostName' — Machine hosting OPC server
'localhost' | other character vector or string

Machine hosting OPC servers, specified as a character vector or string.
Data Types: char | string

'FileName' — File name for output text
'opcsupport.txt' (default)

File name for output text, specified as a character vector or string.
Data Types: char | string

'da' — Indicate data access only
literal character vector or string

Indicate data access only, specified as a literal character vector or string.
Data Types: char | string

'hda' — Indicate historical data access only
literal character vector

Indicate historical data access only, specified as a literal character vector.
Data Types: char

Output Arguments
outFile — Path to file of results
character vector

Path to file of results, returned as a character vector.

Version History
Introduced before R2006a

See Also
Functions
opcserverinfo | opc.daSupport | opc.hdaSupport

19 Functions

19-142

opcua
Create OPC UA client object

Syntax
UaClient = opcua(ServerInfoObj)
UaClient = opcua(ServerUrl)
UaClient = opcua(Hostname,Portnum)

Description
UaClient = opcua(ServerInfoObj) creates an OPC UA client associated with the server
specified by ServerInfoObj. You can create server objects with the opcuaserverinfo function.

UaClient = opcua(ServerUrl) creates a client associated with the server referenced by the URL
specified in ServerUrl.

UaClient = opcua(Hostname,Portnum) creates an OPC UA client object associated with the
server at port Portnum on the host identified by Hostname.

By default, the client attempts to retrieve available connection configurations (called Endpoints) from
the server and chooses the most secure possible security settings from those configurations. If the
attempt to retrieve endpoints fails, an error is generated. You can override the default settings by
using setSecurityModel to change the MessageSecurityMode or ChannelSecurityPolicy
settings.

Examples

Create OPC UA Clients

Create a client for the first server found on the local host.

S = opcuaserverinfo('localhost');
UaClient = opcua(S(1));

Create a client for the server at port 53530 on the local host.

UaClient = opcua('localhost',53530)

UaClient =

OPC UA Client:

 Server Information:
 Name: 'SimulationServer@localhost'
 Hostname: 'localhost'
 Port: 53530
 EndpointUrl: 'opc.tcp://localhost:53530/OPCUA/SimulationServer'

 Connection Information:
 Timeout: 10
 Status: 'Disconnected'
 ServerState: '<Not connected>'

 Security Information:

 opcua

19-143

 MessageSecurityMode: SignAndEncrypt
 ChannelSecurityPolicy: Aes256_Sha256_RsaPss
 Endpoints: [1×11 opc.ua.EndpointDescription]

Create a client using the Discovery URL of the server.

uaClient = opc.ua.Client('opc.tcp://localhost:53530/OPCUA/SimulationServer');

Input Arguments
ServerInfoObj — OPC UA server
OPC UA server object

OPC UA server, specified as an OPC UA server object.
Data Types: object

ServerUrl — OPC UA server URL
char | string

OPC UA server URL, specified as a character vector or string. The server URL must use the opc.tcp
protocol; Industrial Communication Toolbox does not support http or https connections to an OPC UA
server.
Data Types: char | string

Hostname — Server host name or IP address
char | string

Server host name or IP address, specified as a character vector or string. A host name can be short or
a fully qualified domain name.
Example: 'localhost'
Data Types: char | string

Portnum — Server host port number
numeric

Server host port number, specified as a numeric value.
Example: 5000
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
UaClient — OPC UA client
opc.ua.Client object

OPC UA client, returned as an opc.ua.Client object, with the following properties.

Property Description
Hostname Server host name or IP address
Port Port number used for TCP/IP connections to the

server

19 Functions

19-144

Property Description
Name Server description
Timeout Time to wait for all operations on the server to

complete
EndpointUrl URL to use for connection to the server
Namespace Server namespace nodes
UserData Free-form container for user-defined data to

associate with the client
MinSampleRate Minimum sample rate in seconds that the server

can generally support
AggregateFunctions List of aggregate functions supported by this

server
MaxHistoryValuesPerNode Maximum history values returned per node in

historical read operations
MaxHistoryReadNodes Maximum number of nodes supported by

historical read operations
MaxReadNodes Maximum number of nodes supported per read

operation
MaxWriteNodes Maximum number of nodes supported per write

operation
MessageSecurityMode Message security mode specified for connection
ChannelSecurityPolicy Channel security policy specified for connection
UserAuthTypes User authentication types supported by server

Version History
Introduced in R2015b

See Also
Functions
opcuaserverinfo | connect | disconnect | setSecurityModel

 opcua

19-145

opcuanode
Create OPC UA node objects

Syntax
NodeList = opcuanode(Index,Id)
NodeList = opcuanode(Index,Id,UaClient)

Description
NodeList = opcuanode(Index,Id) creates an OPC UA node object or array of objects from the
information in Index and Id. Index is a number or numeric vector. Id is a character vector, string,
scalar integer, or cell array containing character vectors and scalar integers. Use this syntax to
create node objects for known nodes on an OPC UA server. Each node Name property is set to
'Index:Identifier', and other properties of the node are left empty until you use the node to
access an OPC UA server. When you successfully use the node object with a client using writeValue
or readValue, the Client property of the node is set to the client, and other attributes are read
from that client.

NodeList = opcuanode(Index,Id,UaClient) immediately associates the node object with the
specified client UaClient. If UaClient is connected at this time, the opcuanode function also
retrieves other properties from the server associated with UaClient.

Use opcuanode to create node objects only when you know the index and identifier of nodes you are
interested in. For nodes that you need to find from the server, create node objects by browsing the
namespace of a connected OPC UA client object with browseNamespace or getNamespace, or
browse the Parent and Children properties of existing node objects.

Examples

Create a Node and Write to a Server

Construct a node object from index and identifier values. Use the node to write a value to the server,
then note that the node has its properties set from the server.

S = opcuaserverinfo('localhost');
UaClient = opcua(S);
connect(UaClient);
myNode = opcuanode(2,10225); % Not associated with server yet.
writeValue(UaClient,myNode,pi)
myNode

myNode =
OPC UA Node:
 Node Information:
 Name: 2:10225
 Description:
 NamespaceIndex: 2
 Identifier: 10225
 NodeType: Variable

19 Functions

19-146

 Hierarchy Information:
 Parent: ''
 Children: 0

 Server Information:
 ServerDataType: Float
 AccessLevelCurrent: read/write
 AccessLevelHistory: none
 Historizing: 0

Create a Node and Browse Other Nodes

Create a known node object and use it to browse for other nodes.

UaClient = opcua('localhost',51210);
connect(UaClient);
boilerNode = opcuanode(4,1241,UaClient);
ftxNodes = findNodeByName(boilerNode,'FTX','-partial')

ftxNodes =
1x2 OPC UA Node array:
 index Name NsInd Identifier NodeType Children
 ----- ------ ----- ---------- -------- --------
 1 FTX001 4 1243 Object 1
 2 FTX002 4 1266 Object 1

Input Arguments
Index — Node index
numeric value

Node index, specified as a numeric value or array.
Example: 2
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Id — Node ID
numeric | char | string

Node ID, specified as a numeric, character, or string value, or an array of these.
Example: 10225
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

UaClient — OPC UA client
opc.ua.Client object

OPC UA client, specified as an opc.ua.Client object. You can create the client using the opcua
function.
Example: opcua()

 opcuanode

19-147

Output Arguments
NodeList — OPC UA nodes
opc.ua.Node objects

OPC UA nodes, returned as an array of opc.ua.Node objects. An OPC UA node object stores
information about a node in an OPC UA server. You can read and write current data, and read
historical data using variable nodes. You can browse the name space using object and variable nodes.

A node’s type is described by its NodeType property, which can indicate an 'Object' or
'Variable' type. Variable type nodes can contain data values, while object type nodes cannot
contain values. Each node type can contain other nodes: object nodes can contain object and variable
nodes, variable nodes can contain other variable nodes.

Node objects include the following properties.

Property Description
Identity properties
Name Display name for the node.
NodeType Type of node: 'Object' or 'Variable'.
NamespaceIndex Namespace index for this node.
IdentifierType Type of identifier: 'string', 'numeric', or

'GUID'.
Identifier Unique identifier. A character vector or integer,

depending on the IdentifierType.
Relationship properties
Parent Parent node of this node.
Children Child nodes of this node.
Client Reference to OPC UA client associated with the

node.
FullyQualifiedId Character vector that uniquely describes this

node.
Essential attributes
Description Character vector describing the node.
MinimumSamplingInterval Minimum rate at which node value can change.
Historizing True if the server is storing history for the node.
ServerDataType OPC UA data type for node.
Informative attributes
AccessLevelCurrent User access level to current value: 'none',

'read', 'write', 'read/write'.
AccessLevelHistory User access level to historical values: 'none',

'read', 'write', 'read/write'.

19 Functions

19-148

Property Description
ServerValueRank Size restrictions on the server value:

'unrestricted', 'scalar', 'vector', or
'array'.

ServerArrayDimensions Array dimensions of the server value. Might be
empty, as this property is optional for servers.

Version History
Introduced in R2015b

See Also
Functions
opcua | findNodeByName | findNodeById | browseNamespace | readValue | getNamespace |
writeValue

 opcuanode

19-149

opcuaserverinfo
Query host for installed OPC UA servers

Syntax
Sinfo = opcuaserverinfo(HostName)
Sinfo = opcuaserverinfo(DiscoveryUrl)

Description
Sinfo = opcuaserverinfo(HostName) queries the specified host for its installed OPC UA
servers. HostName can be a host name or IP address, specified as a character vector or string.

Note Before running opcuaserverinfo to query a host, you must set up a Local Discovery Service
(LDS) on that host, as described in Install a Local Discovery Service for OPC UA Server Discovery on
page 1-15.

Sinfo = opcuaserverinfo(DiscoveryUrl) queries the Discovery Service located at the URL
DiscoveryUrl. DiscoveryUrl must use the opc.tcp protocol specified by the syntax
"opc.tcp://hostname:port/Url". Use the DiscoveryUrl when your server's OPC UA Discovery
Service uses a nonstandard port number (by default 4840).

Sinfo is returned as an OPC UA ServerInfo object, or an array of these objects, containing the read-
only properties Description, Hostname, Port, and Endpoints. Endpoints contains a list of
available endpoints for the server, as an EndpointDescription array. Endpoints includes
information about the security models supported by each endpoint and the user authentication
available on that endpoint.

Use the opcua function to create an OPC UA client object directly from an opc.ua.ServerInfo
object.

Examples

Find All Servers

Find all available servers on the local host, and view the properties of the first.

Sinfo = opcuaserverinfo('localhost');
Sinfo(1)

OPC UA ServerInfo 'SimulationServer@tmopti01win1064':

 Connection Information:
 Hostname: 'tmopti01win1064.dhcp.mathworks.com'
 Port: 53530
 Endpoints: [1×11 opc.ua.EndpointDescription]

 Security Information:

19 Functions

19-150

 BestMessageSecurity: SignAndEncrypt
 BestChannelSecurity: Aes256_Sha256_RsaPss
 UserTokenTypes: {'Anonymous' 'Username' 'Certificate'}

Create an OPC UA client for the first server found.

uaClient = opcua(Sinfo(1));

Input Arguments
HostName — Host name or IP
char | string

Host name or IP address, specified as a character vector or string, identifying the machine running
the OPC UA servers.
Example: 'localhost'
Data Types: char | string

DiscoveryUrl — Discovery service URL
char | string

Discovery service URL address, specified as a character vector or string in the form "opc.tcp://
hostname:port/Url".
Example: 'localhost'
Data Types: char | string

Output Arguments
Sinfo — Server information
array of opc.ua.ServerInfo objects

Server information, returned as an array of opc.ua.ServerInfo objects. Index into the array to
access the following individual server properties.

Property Description
Hostname Host name used by server to authenticate

connections
Port Port number used for connections to server
Endpoints Available endpoints for server
BestMessageSecurity Highest message security mode supported by

server
BestChannelSecurity Most secure channel security policy supported by

server
UserTokenTypes List of user authentication types supported by

server

 opcuaserverinfo

19-151

Version History
Introduced in R2015b

See Also
Functions
opcua

Topics
Install a Local Discovery Service for OPC UA Server Discovery on page 1-15

19 Functions

19-152

openosf
Open OPC Data Access Explorer session file

Syntax
openosf('Name.osf')

Description
openosf('Name.osf') opens the OPC Data Access Explorer app and loads the session from the
session file Name.osf. Specifying the .osf extension is optional. Name.osf must exist on the
MATLAB path, or you must specify the full path to the file.

This function facilitates opening .osf files from the file browser window.

Version History
Introduced before R2006a

See Also
Functions
open

Apps
OPC Data Access Explorer

 openosf

19-153

peek
Package: icomm.mqtt

View most recent message from MQTT topic

Syntax
mqttMsg = peek(mqttClient)
mqttMsg = peek(mqttClient,Topic=mqttTopic)

Description
mqttMsg = peek(mqttClient) returns the most recent message from all subscribed topics for the
specified MQTT client, as a timetable of messages. This function does not flush the messages, so you
can examine the same messages multiple times.

mqttMsg = peek(mqttClient,Topic=mqttTopic) returns the most recent message from the
specified topic.

Examples

View Latest MQTT Topic Message

View the most recent message of a subscribed MQTT topic.

mqttMsg = peek(mqttClient,Topic="TopMW01")

mqttMsg =

 1×2 timetable

 Time Topic Data
 ____________________ _________ _______________

 14-Dec-2021 16:29:09 "TopMW01" "Hello World 3"

Input Arguments
mqttClient — MQTT client
Client object

MQTT client specified as an icomm.mqtt.Client object, created with the mqttclient function.
Example: mqttClient = mqttclient()
Data Types: object

mqttTopic — MQTT topic
string | char

MQTT topic to view the message from, specified as a string or character vector.

19 Functions

19-154

Example: "trubits/mqTop48"
Data Types: string | char

Output Arguments
mqttMsg — Message viewed from MQTT topic
timetable

Message viewed from MQTT topic, returned as a timetable.

Version History
Introduced in R2022a

See Also
Functions
mqttclient | subscribe | unsubscribe | read

 peek

19-155

peekdata
Preview most recently acquired data

Syntax
S = peekdata(GObj,NRec)

Description
S = peekdata(GObj,NRec) returns the NRec most recently acquired records for the dagroup
object, GObj, without removing those records from the toolbox engine. GObj must be a scalar
dagroup object. S is a structure array containing data for each record, in the same format as the
structure returned by getdata.

If NRec is greater than the number of records currently available, a warning will be generated and all
available records will be returned.

You use peekdata when you want to return logged data but you do not want to remove the data from
the buffer. The object's RecordsAvailable property value will not be affected by the number of
samples returned by peekdata.

peekdata is a non-blocking function that immediately returns records and execution control to the
MATLAB workspace.

Examples
Configure and start a logging task for 60 seconds of data.

da = opcda('localhost','Matrikon.OPC.Simulation');
connect(da);
grp = addgroup(da,'ExOPCREAD');
itm1 = additem(grp,'Triangle Waves.Real8');
itm2 = additem(grp,'Saw-Toothed Waves.Int2');
grp.LoggingMode = 'memory';
grp.RecordsToAcquire = 60;
start(grp);

Wait for 2 seconds and peek at the two most recent records.

pause(2);
s = peekdata(grp,2)
s.Items(1).Value

Version History
Introduced before R2006a

19 Functions

19-156

See Also
Functions
flushdata | getdata | start | stop

 peekdata

19-157

piclient
Create OSIsoft PI client

Description
The OSIsoft PI client object provides access to a PI Server so that you can search the server tags and
read their data.

Creation
Syntax
piClient = piclient(piServer)
piClient = piclient(piServer,Username="WinUserID",Password="WinPwd")
piClient = piclient(
piServer,Username="WinUserID",Password="WinPwd",Domain="WinDomain")

Description

piClient = piclient(piServer) creates an OSIsoft PI client object piClient, and connects to
the OSIsoft PI server specified by piServer.

piClient = piclient(piServer,Username="WinUserID",Password="WinPwd") uses
Windows credentials if required by the OSIsoft PI server. WinUserID and WinPwd are your Windows
login name and password, specified as strings. Credential information is used only to connect to the
PI server and is not retained in the piClient object properties.

piClient = piclient(
piServer,Username="WinUserID",Password="WinPwd",Domain="WinDomain") specifies the
domain name, as a string, associated with the user credentials, if required by the OSIsoft PI server.

If an invalid argument is specified or the connection to the server cannot be established, the object is
not created.

Input Arguments

piServer — Host name of OSIsoft PI server
string | char

Host name of OSIsoft PI server, specified as a string or character vector.
Example: "pi-host-55"
Data Types: string | char

Properties
ServerName — Name of connected OSIsoft PI server
string

19 Functions

19-158

This property is read-only.

Name of connected OSIsoft PI server, returned as a string. This is the value provided as the
piServer input argument to the function.
Example: "pi-host-55"
Data Types: string

Domain — Name of domain associated with user credentials
string

This property is read-only.

Name of domain associated with user credentials, returned as a string. This is the value provided as
the Domain input argument to the function.
Example: "MY-NET3"
Data Types: string

Object Functions
tags List tags from OSIsoft PI server
read Read data from OSIsoft PI server
viewer Visualize data from OSIsoft PI Server

Examples

Create a Client Connect to an OSIsoft PI Server

Construct a client object and connect to the OSIsoft PI server named pi-host-55.

piClient = piclient("pi-host-55");

Create a client object and connect to the OSIsoft PI server named pi-host-55 using Windows
credentials.

p = piclient("pi-host-55",Username="myID",Password="myPwd");

Version History
Introduced in R2022a

 piclient

19-159

plot
Package: opc.hda

Plot OPC HDA data object as lines

Syntax
plot(dObj)
plot(dObj,'Parent',AX)
plot(dObj,)
pH = plot(dObj, ...)

Description
plot(dObj) plots the data in OPC HDA data object dObj. Each element of dObj is plotted into the
current axes as the value against its time stamp. Quality is not displayed in the plot.

plot(dObj,'Parent',AX) plots the data into the axes of handle AX.

plot(dObj,) passes any additional arguments to the MATLAB plot function. Use this syntax
to define colors and line styles for the data, or to modify other properties of the plotted data.

pH = plot(dObj, ...) returns the handles to the created line series objects in pH.

In all cases, if the current plot is not held, the X-axis is updated using datetick to show date ticks
instead of numeric ticks.

Examples
Load the OPC HDA example data file and plot the hdaDataVis object:

load opcSampleHdaData;
plot(hdaDataVis)

See Also
datetick | plot | stairs

19 Functions

19-160

propinfo
Property information for OPC objects

Syntax
Out = propinfo(Obj)
Out = propinfo(Obj,'PropName')

Description
Out = propinfo(Obj) returns a structure array with field names given by the property names for
Obj. Each property name in the output contains a structure with the fields shown below.

Field Name Description
Type Data type of the property. Possible values are 'any', 'callback',

'double', and 'string'.
Constraint Type of constraint on the property value. Possible values are 'bounded',

'callback', 'enum', and 'none'.
ConstraintValue List of valid character vector values or a range of valid values
DefaultValue Default value for the property
ReadOnly Condition under which a property is read-only:

• 'always' — Property cannot be configured.
• 'whileConnected' — Property cannot be configured while Status

is set to 'connected'.
• 'whileLogging' — Property cannot be configured while Logging is

set to 'on'.
• 'never' — Property can be configured at any time.

Out = propinfo(Obj,'PropName') returns a structure array, Out, for the property specified by
PropName. If PropName is a cell array of character vectors or an array of strings, then the function
returns a cell array of structures for each property.

Examples
da = opcda('localhost','Dummy.Server');
allInfo = propinfo(da)
serverIDInfo = propinfo(da,'ServerID')

Version History
Introduced before R2006a

 propinfo

19-161

See Also
Functions
opchelp

19 Functions

19-162

read
Read data synchronously from OPC DA groups or items

Syntax
S = read(GObj)
S = read(IObj)
S = read(GObj,Src)
S = read(IObj,Src)

Description
S = read(GObj) and S = read(IObj) read data for all the items contained in the dagroup
object, GObj, or for the vector of daitem objects, IObj. The data is read from the OPC server’s
cache, and assigned to the structure S.

You can synchronously read from the cache only if the Active property is set to 'on' for both the
item and the group that contains the item. A warning is issued if any of the objects passed to read
are inactive. An inactive item is still returned in S, but the Quality is set to 'BAD: Out of
Service'.

S = read(GObj,Src) and S = read(IObj,Src) read data from the source specified by Src. Src
can be 'cache' or 'device'. If Src is 'device', data is returned directly from the device. If Src
is 'cache', data is returned from the OPC server's cache, which contains a copy of the device data.
Note that the Active property is ignored when reading from 'device'. Note also, that reading data
from the device can be slow.

When a read operation succeeds, the Value, Quality, and Timestamp properties of the associated
items are updated to reflect the values obtained from the read operation.

Examples

Read Data from a Group

This example reads from a device and cache.

Configure a client, group, and item for the Matrikon Simulation Server. Set the update rate for this
group to prevent frequent cache updates.

da = opcda('localhost','Matrikon.OPC.Simulation');
connect(da);
grp = addgroup(da,'ExRead');
grp.UpdateRate = 20;
itm = additem(grp,'Random.Real8');

Read twice from the cache, noting that the values are the same each time.

v1 = read(grp)
v2 = read(grp)

 read

19-163

Now read twice from the device, noting that the value updates each time.

v3 = read(grp,'device')
v4 = read(grp,'device')

Input Arguments
GObj — OPC DA group
dagroup object

OPC DC group, specified as a dagroup object.
Example: GObj = addgroup()

IObj — OPC DA item
array of daitem objects

OPC DA items, specified as an array of opcda item objects.
Example: IObj = additem()

Src — Data source to read
'device' | 'cache'

Data source to read, specified as 'device' or 'cache'.
Example: 'device'
Data Types: char | string

Output Arguments
S — Read data
structure

Read data, returned as a structure containing data for each item in the following fields:

Field Name Description Type
ItemID Fully qualified item name character vector
Value Value double, character

vector
Quality Quality of the value character vector
TimeStamp The time that the value and quality was obtained by the

device (if this is available), or the time the server updated
or validated the value and quality in its cache

Date vector

Error Error message character vector

Version History
Introduced before R2006a

19 Functions

19-164

See Also
Functions
addgroup | additem | readasync | refresh | write | writeasync

 read

19-165

read
Package: icomm.mqtt

Read available messages from MQTT topic

Syntax
read(mqttClient)
mqttMsg = read(mqttClient,Topic=mqttTopic)

Description
mqttMsg = read(mqttClient) reads all available messages from all subscribed topic in the
specified MQTT client. This action flushes the messages so they cannot be read again.

mqttMsg = read(mqttClient,Topic=mqttTopic) reads all available messages from the
specified MQTT topic among the topics that mqttClient is subscribed to.

Examples

Read Messages from MQTT Topics

Read messages from one or more subscribed MQTT topics.

Read all available messages from a specific subscribed topic.

mqttMsg = read(mqttClient,Topic="TopMW01");

Read all available messages from all subscribed topics.

mqttMsg = read(mqttClient)

mqttMsg =

 2×2 timetable

 Time Topic Data
 ____________________ _________ _______________

 14-Dec-2021 16:00:37 "TopMW01" "Hello World 1"
 14-Dec-2021 16:00:41 "TopMW01" "Hello World 2"

Programmatically access the first message.

mqttMsg.Data(1)

19 Functions

19-166

ans =

 "Hello World 1"

Input Arguments
mqttClient — MQTT client
Client object

MQTT client specified as an icomm.mqtt.Client object, created with the mqttclient function.
Example: mqttClient = mqttclient()
Data Types: object

mqttTopic — MQTT topic
string | char

MQTT topic to read messages from, specified as a string or character vector.
Example: "trubits/mqTop48"
Data Types: string | char

Output Arguments
mqttMsg — Messages read from MQTT topics
timetable

Messages read from MQTT topics, returned as a timetable of messages.

Version History
Introduced in R2022a

See Also
Functions
mqttclient | subscribe | unsubscribe | peek | flush | write

 read

19-167

read
Package: icomm.pi

Read data from OSIsoft PI server

Syntax
piValues = read(piClient,tagName)
piValues = read(piClient,tagName,Earliest=true)
piValues = read(piClient,tagName,DateRange=[startDate,endDate])
piValues = read(piClient,tagName,DateRange=[startDate,endDate],Interval=
timeStep)

Description
piValues = read(piClient,tagName) reads the latest data value from each of the specified tags
of the OSIsoft PI server that the client piClient is connected to. tagName can be a string or vector
of strings. The data is returned to piValues as a timetable.

piValues = read(piClient,tagName,Earliest=true) reads the earliest value from each of
the specified tags.

piValues = read(piClient,tagName,DateRange=[startDate,endDate]) reads data points
in the range between the start and end dates, specified by the datetime values of
[startDate,endDate].

piValues = read(piClient,tagName,DateRange=[startDate,endDate],Interval=
timeStep) reads the data points in the given time range interpolated for each interval specified by
the duration timeStep.

Examples

Read Various Data Points from OSIsoft PI Server

Read the latest data point of a single tag.

piValues = read(piClient, "Plant1_generator1_voltage");

Read the earliest data point of a single tag.

piValues = read(piClient, "Plant1_generator1_voltage", Earliest=true);

Read data points of a single tag over the past one-day period.
startDate = datetime("now") - days(1);
endDate = datetime("now");
piValues = read(piClient, "Plant1_generator1_voltage", DateRange=[startDate,endDate]);

Read all data points of multiple tags over a 6-hour period, interpolating every 5 minutes.
startDate = datetime(2021,6,12,14,10,30); % 12-Jun-2021 14:10:30
endDate = startDate + hours(6);

19 Functions

19-168

piValues = read(piClient,["Plant1_generator1_voltage","Plant1_generator1_current"], ...
 DateRange=[startDate,endDate], Interval=minutes(5));

Input Arguments
piClient — Client connected to OSIsoft PI server
icomm.pi.Client object

Client connected to OSIsoft PI server, specified as an icomm.pi.Client object. You create the
object with the piclient function.
Example: piClient = piclient(_)
Data Types: object

tagName — Tag names to read
string | char

Tag names to read from, specified as a string, string array, character vector, or cell array of character
vectors.
Example: "Power_ckt2"
Data Types: char | string | cell

[startDate,endDate] — Data range of data
vector of datetime

Date range of data to read, specified as a 2-element vector of datetime values.
Example: [datetime("1-Jan-2020"),datetime("31-Jan-2020")]
Data Types: datetime

timeStep — Interval span for data interpolation
duration

Interval span for data interpolation, specified as a duration value.
Example: hours(1)
Data Types: duration

Output Arguments
piValues — Data point values read from PI server
timetable

Data point values read from PI server, returned as a timetable.

Version History
Introduced in R2022a

 read

19-169

See Also
Functions
piclient | tags

19 Functions

19-170

read
Read data from Modbus server

Syntax
moddata = read(m,target,address)
moddata = read(m,target,address,count)
moddata = read(m,target,address,count,serverId)
moddata = read(m,target,address,count,precision)
moddata = read(m,target,address,count,serverId,precision)

Description
moddata = read(m,target,address) reads one data value from Modbus object m and target area
target at the starting address address. The function reads one value by default.

moddata = read(m,target,address,count) reads multiple data values beginning at the
starting address address. count specifies the number of values to read.

moddata = read(m,target,address,count,serverId) additionally specifies serverId, which
is the address of the server to send the read command to.

moddata = read(m,target,address,count,precision) additionally specifies the precision,
which is the data format of the register being read.

moddata = read(m,target,address,count,serverId,precision) specifies both the address
of the server and the data format precision of the register.

Examples

Read Coils over Modbus

If the read target is coils, the function reads the values from 1–2000 contiguous coils in the remote
server, starting at the specified address. A coil is a single output bit. A value of 1 indicates the coil is
on and a value of 0 means it is off.

Read 8 coils, starting at address 1. The address parameter is the starting address of the coils to
read, and the count parameter is the number of coils to read.

moddata = read(m,'coils',1,8)

moddata =

 1 1 0 1 1 0 1 0

 read

19-171

Read Inputs Over Modbus

If the read target is inputs, the function reads the values from 1–2000 contiguous discrete inputs in
the remote server, starting at the specified address. A discrete input is a single input bit. A value of 1
indicates the input is on and a value of 0 means it is off.

Read 10 discrete inputs, starting at address 2. The address parameter is the starting address of the
inputs to read, and the count parameter is the number of inputs to read.

moddata = read(m,'inputs',2,10)

moddata =

 1 1 0 1 1 0 1 0 0 1

Read Input Registers over Modbus

If the read target is input registers, the function reads the values from 1–125 contiguous input
registers in the remote server, starting at the specified address. An input register is a 16-bit read-only
register.

Read 4 input registers, starting at address 20. The address parameter is the starting address of the
input registers to read, and the count parameter is the number of input registers to read.

moddata = read(m,'inputregs',20,4)

moddata =

 27640 60013 51918 62881

Read Holding Registers over Modbus

If the read target is holding registers, the function reads the values from 1–125 contiguous holding
registers in the remote server, starting at the specified address. A holding register is a 16-bit read/
write register.

Read 5 holding registers, starting at address 2. The address parameter is the starting address of the
holding registers to read, and the count parameter is the number of holding registers to read.

moddata = read(m,'holdingregs',2,5)

moddata =

 27640 60013 51918 62881 34836

Specify Server ID and Precision Options for the Read Operation

You can read any of the four types of targets and also specify the optional parameters for server ID,
and you can specify precision for the two types of registers. You can set either option by itself or set
both the serverId option and the precision option together. Both options should be listed after
the required arguments.

19 Functions

19-172

Read 8 holding registers starting at address 1 using a precision of 'uint32' from Server ID 3.

moddata = read(m,'holdingregs',1,8,3,'uint32');

Read Mixed Data Types

You can read contiguous values of different data types (precisions) by specifying the data type for
each value. You can do that within the syntax of the read function, or set up variables containing
arrays of counts and precisions. Both methods are shown here.

Read contiguous registers of the same data type.

moddata = read(m,'holdingregs',500,10,'uint32');

In that example, the target type is holding registers, the starting address is 500, the count is 10, and
the precision is uint32.

If you wanted to have the 10 values be of mixed data types, you can use this syntax:
moddata = read(m,'holdingregs',500,[3 2 3 2],{'uint16', 'single', 'double', 'int16'});

Specify both count and precision as arrays of values. In this case, the counts are 3, 2, 3, and 2. The
command reads 3 values of data type uint16, 2 values of data type single, 3 values of data type
double, and 2 values of data type int16. The registers are contiguous, starting at address 500.

Instead of using arrays inside the read command as shown in the previous step, you can also use
arrays as variables in the command. The equivalent code for the same example is:

count = [3 2 3 2]
precision = {'uint16', 'single', 'double', 'int16'}
moddata = read(m,'holdingregs',500,count,precision);

Using variables is convenient when you have a lot of values to read and they are of mixed data types.

Input Arguments
target — Target area to read
character vector | string

Target area to read, specified as a character vector or string. You can perform a Modbus read
operation on four types of targets: coils, inputs, input registers, and holding registers, corresponding
to the values 'coils', 'inputs', 'inputregs', and 'holdingregs'. Target must be the first
argument after the object name. This example reads 8 coils starting at address 1.
Example: read(m,'coils',1,8)
Data Types: char

address — Starting address to read from
double

Starting address to read from, specified as a double. Address must be the second argument after the
object name. This example reads 10 coils starting at address 2.
Example: read(m,'coils',2,10)

 read

19-173

Data Types: double

count — Number of values to read
double

Number of values to read, specified as a double. Count is the third argument after the object name. If
you do not specify a count, the default of 1 is used. This example reads 12 coils starting at address 2.
Example: read(m,'coils',2,12)
Data Types: double

serverId — Address of the server to send the read command to
double

Address of the server to send the read command to, specified as a double. Server ID must be
specified after the object name, target, address, and count. If you do not specify a serverId, the
default of 1 is used. Valid values are 0-247, with 0 being the broadcast address.

Note If your device uses a slaveID property, it might work to use it as the serverID property with
the read command as described here.

This example reads 8 coils starting at address 1 from server ID 3.
Example: read(m,'coils',1,8,3);
Data Types: double

precision — Data format of the register being read from on the Modbus server
character vector | string

Data format of the register being read from on the Modbus server, specified as a character vector or
string. Precision must be specified after the object name, target, address, and count. Valid values are
'uint16', 'int16', 'uint32', 'int32', 'uint64', 'int64', 'single', and 'double'. This
argument is optional; the default is 'uint16'.

Note that precision does not refer to the return type, which is always 'double'. It specifies how
to interpret the register data.

This example reads 6 holding registers starting at address 2 using a precision of 'uint32'.
Example: read(m,'holdingregs',2,6,'uint32');
Data Types: char

Output Arguments
moddata — Value of read data
double

Read data values, returned as a double or array of doubles.

Version History
Introduced in R2017a

19 Functions

19-174

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
modbus | write | writeRead | maskWrite

Topics
“Create a Modbus Connection” on page 18-3
“Configure Properties for Modbus Communication” on page 18-5
“Read Data from a Modbus Server” on page 18-8
“Read Temperature from a Remote Temperature Sensor” on page 18-13

 read

19-175

readasync
Read data asynchronously from group or items

Syntax
TransID = readasync(GObj)
TransID = readasync(IObj)

Description
TransID = readasync(GObj) and TransID = readasync(IObj) asynchronously read data for
all the items contained in the dagroup object, GObj, or for the vector of daitem objects specified by
IObj. TransID is a unique transaction ID for the asynchronous request.

For asynchronous reads, data is always read from the device, not from the server cache. The Active
property is ignored for asynchronous reads.

When the read operation completes, a read async event is generated by the server. If a callback
function file is specified for the ReadAsyncFcn property, that function executes when the event is
generated.

You can cancel an in-progress asynchronous request using cancelasync.

When a readasync operation succeeds, the Value, Quality, and Timestamp properties of the
associated items are updated to reflect the values obtained from the read operation.

Examples
Configure a client, group, and item, for the Matrikon Simulation Server:

da = opcda('localhost','Matrikon.OPC.Simulation');
connect(da);
grp = addgroup(da,'ExReadAsync');
grp.UpdateRate = 20;
itm = additem(grp,'Random.Real8');

Perform two asynchronous read operations:

tid1 = readasync(grp)
tid2 = readasync(grp)

Examine the event log:

pause(2)
disp('Event log:')
showopcevents(da)

Version History
Introduced before R2006a

19 Functions

19-176

See Also
cancelasync | read | refresh | write | writeasync

 readasync

19-177

readAtTime
Package: opc.hda

Read data from an OPC HDA server at specified times

Syntax
DObj = readAtTime(HdaClient,ItmList,TimeStamps)
[ItmList,Value,Quality,TimeStamp] =
readAtTime(HdaClient,ItmList,TimeStamps,'DataType')
S = readAtTime(HdaClient,ItmList,TimeStamps,'struct')

Description
DObj = readAtTime(HdaClient,ItmList,TimeStamps) reads data from the items defined by
ItmList, from the OPC HDA Server associated with client object HdaClient, at the time stamps
specified by TimeStamps. HdaClient must be a scalar connected OPC HDA Client. ItmList is a
character vector, string, or array defining one or more Fully Qualified ItemIDs in the name space of
the OPC Server. TimeStamps must be a vector of MATLAB date numbers. DObj is returned as an
opc.hda.Data object array the same size as the number of items specified by ItmList. Each
element of DObj is guaranteed to have the same time stamp as the other elements of DObj.

When no value exists for a specified time stamp, the server will interpolate a value from the
surrounding values to represent the value at that time stamp, and the Quality for that time stamp
will include the Interpolated bit.

[ItmList,Value,Quality,TimeStamp] =
readAtTime(HdaClient,ItmList,TimeStamps,'DataType') where 'DataType' is one of the
built-in MATLAB numeric arrays ('double', 'single', etc.) or 'cell', returns the data in the
specified data type. ItmID is returned as a 1-by-N cell array of character vectors. Value is an array
of M-by-N values. Quality is an array of M-by-N quality IDs, and TimeStamp is a M-by-1 array of
time stamps as MATLAB date numbers.

S = readAtTime(HdaClient,ItmList,TimeStamps,'struct') returns a structure containing
the fields ItemID, Value, Quality and TimeStamp.

Examples
Create an OPC HDA Client and connect the client to the server.
hdaObj = opchda('localhost','Matrikon.OPC.Simulation');
connect(hdaObj);

Read the values of two items every 10 seconds for the last hour.
DObj = readAtTime(hdaObj,{'Random.Real8','Random.Real4'},[now-1/24:10/86400:now]);

Version History
Introduced in R2015b

19 Functions

19-178

See Also
Functions
datenum | readRaw | readProcessed | readModified

 readAtTime

19-179

readAtTime
Package: opc.ua

Read historical data from nodes of OPC UA server at specific times

Syntax
UaData = readAtTime(UaClient,NodeList,TimeVector)
UaData = readAtTime(NodeList,TimeVector)

Description
UaData = readAtTime(UaClient,NodeList,TimeVector) reads stored historical data from the
nodes given by NodeList, at the specified times in TimeVector. NodeList is an array of OPC UA
node objects, which you can create using getNamespace, browseNamespace, or opcuanode.
TimeVector is an array of MATLAB datetimes or date numbers.

UaData is returned as a vector of OPC UA data objects. The server interpolates or extrapolates data
if it is not stored at the times specified in TimeVector. Data Quality is set appropriately for
interpolated data. If readHistory fails to retrieve history for a given node, that node is not included
in the returned OPC UA data object, and a warning is issued. If all requested nodes fail, an error is
generated.

UaData = readAtTime(NodeList,TimeVector) reads from the nodes identified by NodeList.
All nodes must be of the same connected client.

OPC UA servers provide historical data only from nodes of type Variable. If you attempt to read
values from an Object node, no data is returned for that node, the status for that node is set to
Bad:AttributeNotSupported, and the node is not included in the returned UaData object.

Examples
Retrieve the 10 minute sampled history for the current day from a local server.

uaClnt = opcua('localhost',62550);
connect(uaClnt);
nodeId = '1:Quickstarts.HistoricalAccessServer.Data.Dynamic.Double.txt';
nodeList = opcuanode(2,nodeId,uaClnt);
TimeVector = datetime('today'):minutes(10):datetime('now');
dataObj = readAtTime(uaClnt,nodeList,TimeVector);

Version History
Introduced in R2015b

See Also
readValue | readHistory | readProcessed | opcuanode

19 Functions

19-180

readHistory
Package: opc.ua

Read historical data from nodes on OPC UA server

Syntax
UaData = readHistory(UaClient,NodeList,StartTime,EndTime)
UaData = readHistory(UaClient,NodeList,StartTime,EndTime,ReturnBounds)
UaData = readHistory(NodeList,StartTime,EndTime)
UaData = readHistory(NodeList,StartTime,EndTime,ReturnBounds)

Description
UaData = readHistory(UaClient,NodeList,StartTime,EndTime) reads stored historical
data from the nodes identified by NodeList, on the server associated with the connected client
UaClient,with a source timestamp between StartTime (inclusive) and EndTime
(exclusive).NodeList is a single OPC UA node object or an array of nodes. StartTime and EndTime
can be MATLAB datetime values or date numbers.

UaData = readHistory(UaClient,NodeList,StartTime,EndTime,ReturnBounds) allows
you to specify that returned data should include bounding values. Bounding values are the values
immediately outside the time range requested (the first value just before StartTime, or the first
value after EndTime) when a value does not exist exactly on the specified limit of the time range.
Setting ReturnBounds to true returns bounding values; setting ReturnBounds to false (the
default) returns values strictly within the specified start and end times.

UaData = readHistory(NodeList,StartTime,EndTime) and UaData = readHistory(
NodeList,StartTime,EndTime,ReturnBounds) read from the nodes identified by NodeList. All
nodes must be of the same connected client.

Examples

Read History from a Node

This example shows how to retrieve the history for the current day from a local server.
uaClnt = opcua('localhost',62550);
connect(uaClnt);
nodeId = '1:Quickstarts.HistoricalAccessServer.Data.Dynamic.Double.txt';
nodeList = opcuanode(2,nodeId,uaClnt);
dataObj = readHistory(uaClnt,nodeList,datetime('today'),datetime('now'));

Input Arguments
UaClient — OPC UA client
OPC UA client object

OPC UA client specified as an OPC UA client object. The client must be connected.

 readHistory

19-181

NodeList — List of nodes
array of node objects

List of nodes, specified as an array of node objects or a single node. You can create node objects
using getNamespace, browseNamespace, or opcuanode. For information on node object functions
and properties, type:

help opc.ua.Node

You can read only from variable type nodes, not object type nodes. If you specify an object node to
read, the return value is an empty array, and the quality is set to Bad:AttributeIdInvalid.

StartTime,EndTime — Source time span
MATLAB datetime

Source time span, specified as MATLAB datetime values or date numbers. The source times fall
between StartTime (inclusive) and EndTime (exclusive).

ReturnBounds — Request bounding values
false (default) | true

Request bounding values, specified as true or false.

Output Arguments
UaData — historical data
vector of OPC UA Data objects

Historical data, returned as a vector of OPC UA Data objects. If readHistory fails to retrieve history
for a given node, that node is not returned in the OPC UA Data object and a warning is issued. If all
requested nodes fail, an error is generated.

Version History
Introduced in R2015b

See Also
Functions
readValue | readAtTime | opcuanode | readProcessed

19 Functions

19-182

readItemAttributes
Package: opc.hda

Read item attribute values from OPC HDA server

Syntax
S = readItemAttributes(HdaObj, ItemID, Attribute, StartTime, EndTime)

Description
S = readItemAttributes(HdaObj, ItemID, Attribute, StartTime, EndTime) reads item
attribute values for the opc.hda.ItemAttributes item with ID ItemID. HdaObj must be a scalar
OPC HDA client that is already connected to the server.

ItemID is a character vector or string containing the item ID for which attributes are requested.
Attribute is the requested attribute for the item, specified either as a character vector or string as
the ID for that attribute. StartTime and EndTime are MATLAB date numbers representing the start
and end times of the period over which data must be aggregated.

S is returned as a structure array containing fields ItemID, AttributeID, TimeStamp and Value.
ItemID is the item ID requested. AttributeID is the numeric ID of the attribute requested.
TimeStamp is a vector containing the time stamps when the attribute was updated. Value is the
value that the attribute was changed to at each time in TimeStamp.

The ItemAttributes property of the connected client object HdaObj contains all valid item
attributes for the server.

Examples
Retrieve the current data type of the 'Random.Real8' property:
hdaObj = opchda('localhost','Matrikon.OPC.Simulation');
connect(hdaObj);
attrStruct = hdaObj.readItemAttributes('Random.Real8', ...
 hdaObj.ItemAttributes.DATA_TYPE,now,now)

Version History
Introduced in R2011a

 readItemAttributes

19-183

readModified
Package: opc.hda

Read modified data from an OPC HDA server

Syntax
DObj = readModified(HdaClient,ItmList,StartTime,EndTime)

Description
DObj = readModified(HdaClient,ItmList,StartTime,EndTime) reads modified data from
the items defined by ItmList, stored on the OPC HDA server connected to OPC HDA Client
HdaClient, between StartTime (inclusive) and EndTime (exclusive). The StartTime and EndTime
arguments must be date numbers, or character vectors that can be converted to a MATLAB date
number. DObj is returned as an opc.hda.Data array, with one element per item specified in
ItmList.

DObj contains only data items that have been modified, replaced, or deleted on the OPC HDA server;
that is, only data values that return a quality of 'Extra Data' during a readRaw operation. If a
value has been modified multiple times, all values for that time are returned.

Some servers do not support this function.

Version History
Introduced in R2011a

See Also
Functions
datenum | readRaw

19 Functions

19-184

readProcessed
Package: opc.hda

Read server-aggregated data from an OPC HDA server

Syntax
DObj =
readProcessed(HdaObj,ItmList,AggregateType,AggregateInterval,StartTime,EndTim
e)
[ItmID,Value,Quality,TimeStamp] =
readProcessed(HdaObj,ItmList,AggregateType,AggregateInterval,StartTime,EndTim
e,'DataType')
S =
readProcessed(HdaObj,ItmList,AggregateType,AggregateInterval,StartTime,EndTim
e,'struct')

Description
DObj =
readProcessed(HdaObj,ItmList,AggregateType,AggregateInterval,StartTime,EndTim
e) reads processed data from the OPC HDA Server associated with client object HdaObj, returning
the processed data in opc.hda.Data object DObj. HdaObj must be a scalar OPC HDA client that is
already connected to the server.

ItmList is a string array or cell array of item IDs to read from. AggregateType is the requested
aggregate type, obtained from the client’s Aggregates property. AggregateInterval is the time
interval in seconds that the server must aggregate data over. StartTime and EndTime are MATLAB
date numbers representing the start and end times of the period over which data must be
aggregated.

[ItmID,Value,Quality,TimeStamp] =
readProcessed(HdaObj,ItmList,AggregateType,AggregateInterval,StartTime,EndTim
e,'DataType') returns the processed data as separate arrays. 'DataType' is one of the built-in
MATLAB numeric arrays ('double', 'single', etc.) or 'cell'. ItmID is returned as a 1-by-N cell
array of character vectors. Value is an array of M-by-N values. Quality is an array of M-by-N
quality IDs, and TimeStamp is a M-by-1 array of time stamps as MATLAB date numbers.

S =
readProcessed(HdaObj,ItmList,AggregateType,AggregateInterval,StartTime,EndTim
e,'struct') returns the processed data as a structure containing fields ItemID, Value, Quality
and TimeStamp.

Examples
Create an OPC HDA Client and connect the client to the server:
hdaObj = opchda('localhost','Matrikon.OPC.Simulation');
connect(hdaObj);

Read the one minute average values of two items for the last hour:

 readProcessed

19-185

aggregates = hdaObj.Aggregates
DObj = readProcessed(hdaObj,{'Random.Real8','Random.Real4'}, ...
 aggregates.TIMEAVERAGE,60,now-1/24,now);

Version History
Introduced in R2011a

See Also
Functions
readRaw | readAtTime | readModified | opc.hdaQualityString

19 Functions

19-186

readProcessed
Package: opc.ua

Read aggregate data from nodes of an OPC UA server

Syntax
UaData = readProcessed(UaClient,NodeList,AggregateFn,AggrInterval,
StartTime,EndTime)
UaData = readProcessed(NodeList,AggregateFn,AggrInterval,StartTime,EndTime)

Description
UaData = readProcessed(UaClient,NodeList,AggregateFn,AggrInterval,
StartTime,EndTime) reads processed historical data from the nodes given by NodeList.
NodeList must be an array of OPC UA node objects, which you can create using getNamespace,
browseNamespace, or opcuanode. The interval between StartTime and EndTime (which can be
datetime variables or date numbers) is split into intervals of AggrInterval, a MATLAB duration
variable or a double representing the interval in seconds. For each interval of time, the server
calculates a processed value based on the AggregateFn requested. AggregateFn can be specified
as a character vector or as an AggregateFnId object. A client stores the available Aggregates for a
server in the AggregateFunctions property. For a description of Aggregate functions, see “OPC UA
Aggregate Functions” on page 17-10.

UaData is returned as a vector of OPC UA data objects. If readProcessed fails to retrieve historical
data for a given node, that node is not included in the returned OPC UA data object, and a warning is
issued. If all requested nodes fail, an error is generated.

UaData = readProcessed(NodeList,AggregateFn,AggrInterval,StartTime,EndTime)
reads from the nodes identified by NodeList. All nodes must be of the same connected client.

OPC UA servers provide historical data only from nodes of type Variable. If you attempt to read
values from an Object node, no data is returned for that node, and the status for that node is set to
Bad:AttributeNotSupported, a warning is issued, and the node is not included in the returned
UaData object.

Examples

Read Processed Data at Fixed Intervals

Retrieve the average value for each 10 minute interval of the current day from a local server.

uaClnt = opcua('localhost',62550);
connect(uaClnt);
nodeId = '1:Quickstarts.HistoricalAccessServer.Data.Dynamic.Double.txt';

 readProcessed

19-187

nodeList = opcuanode(2,nodeId,uaClnt);
dataObj = readProcessed(uaClnt,nodeList,'Average',minutes(10),datetime('today'),datetime('now'));

Input Arguments
UaClient — OPC UA client
opc.ua.Client object

OPC UA client, specified as an opc.ua.Client object. Create a client object with the opcua
function. The client must be connected.
Example: opcua()

NodeList — OPC UA nodes
opc.ua.Node object

OPC UA nodes, specified as a opc.ua.Node object, or array of objects.
Example: opcuanode()

AggregateFn — Aggregate function
char vector | AggregateFnId object

Aggregate function, specified as a character vector or as an AggregateFnId object. A client stores
the available aggregates for a server in its AggregateFunctions property.

For a description of the standard aggregate functions defined by the OPC Foundation, see “OPC UA
Aggregate Functions” on page 17-10.
Example: 'Average'

AggrInterval — Aggregation interval segment
double | duration

Aggregation interval segment, specified as a MATLAB duration or a double indicating seconds.
Example: minutes(10)
Data Types: double | duration

StartTime,EndTime — Aggregation interval boundaries
datetime | date

Aggregation interval boundaries, specified as datetime or date numbers.
Example: datetime('today'),datetime('now')
Data Types: double | datetime

Output Arguments
UaData — OPC UA data
vector of opc.ua.Data objects

OPC UA data, returned as a vector of opc.ua.Data objects. If readProcessed fails to retrieve data
for a given node, that node is not returned in the opc.ua.Data object and a warning is issued. If all
requested nodes fail, an error is generated.

19 Functions

19-188

Version History
Introduced in R2015b

See Also
Functions
opcuanode | readAtTime | readHistory | readValue

 readProcessed

19-189

readRaw
Package: opc.hda

Read raw data of specified time range from HDA server

Syntax
DObj = readRaw(HdaClient,ItmList,StartTime,EndTime)
DObj = readRaw(HdaClient,ItmList,StartTime,EndTime,ExtendedBounds)

Description
DObj = readRaw(HdaClient,ItmList,StartTime,EndTime) reads data from the items defined
by ItmList, stored on the OPC HDA server connected to OPC HDA client HdaClient, between
StartTime (inclusive) and EndTime (exclusive). The StartTime and EndTime arguments must be
date numbers, or character vectors that can be converted to a MATLAB date number. DObj is
returned as an opc.hda.Data array, with one element per item specified in ItmList.

DObj = readRaw(HdaClient,ItmList,StartTime,EndTime,ExtendedBounds) allows you to
specify boundary extension. If ExtendedBounds is true, then the first data point on or outside the
defined start and end times is returned. If ExtendedBounds is false, then only values that were
timestamped between StartTime (inclusive) and EndTime (exclusive) are included.

One or more timestamps returned for each item can be unique to that item. To retrieve aligned data
from an OPC HDA server, use readAtTime or readProcessed.

Examples

Read Past Day's Data from Two Items

Read data over the past day from two items in the OPC HDA server.

Create an OPC HDA client and connect the client to the server.
hdaObj = opchda('localhost','Matrikon.OPC.Simulation');
connect(hdaObj);

Read the last day’s data from two specified items.
DObj = readRaw(hdaObj,{'Random.Real8','Random.Real4'},now-1,now);

Input Arguments
HdaClient — OPC HDA client
OPC HDA client object

OPC HDA client, specified as an OPC HDA client object.
Example: opchda()

19 Functions

19-190

ItmList — HDA items
char vector | string | cell

HDA items, specified as a character vector, string, or supporting array of either.
Example: {'Random.Real8','Random.Real4'}
Data Types: char | string | cell

StartTime,EndTime — Time boundaries
serial date numbers | character vectors

Time boundaries, specified as serial date numbers. The values can be doubles, such as values
returned by the datenum or now functions, or character vectors that can be converted to date
numbers.
Example: datenum(2018,11,30)
Data Types: double | char

ExtendedBounds — Extend time boundaries to assure inclusion of start and stop times
false (default) | true

Extend time boundaries to assure inclusion of start and end times, specified as false or true.

This flag instructs the historical server whether to completely span the required start and end time,
or return only values that are contained within the specified start and end time (start time included
but not end time). If ExtendedBounds is true, the returned values are guaranteed to include the
timestamp at or before the specified start time, and at or after the specified end time. If
ExtendedBounds is false, there is no guarantee that the values include the exact specified start
time, and definitely do not include the specified end time. The rules applied by this flag are:

• If ExtendedBounds is false (default), the server returns all recorded data from the start time
up to, but not including, the end time.

• If ExtendedBounds is true, the server returns all data from the start time up to (and including)
the end time. If no data value exists exactly at the start time, the previous value is returned; if no
data value exists exactly at the end time, the next value is be returned; even if these values are
outside the specified start and end times.

• If ExtendedBounds is true and no data exists on the start time or before it, the server includes a
value of Empty at the start timestamp, and a quality of OPCHDA_NOBOUND (“No Bound”). Similarly
for the end time.

Example: true
Data Types: logical

Output Arguments
DObj — Raw OPC HDA data
OPC HDA data object

Raw OPC HDA data returned as an array of OPC HDA data objects, with one element per item.

 readRaw

19-191

Version History
Introduced in R2011a

See Also
Functions
datenum | readAtTime | readProcessed | readModified

19 Functions

19-192

readValue
Package: opc.ua

Read values from nodes on OPC UA server

Syntax
[Values,Timestamps,Qualities] = readValue(UaClient,NodeList)
[Values,Timestamps,Qualities] = readValue(NodeList)

Description
[Values,Timestamps,Qualities] = readValue(UaClient,NodeList) reads the value,
quality, and timestamp from the nodes identified by NodeList, on the server associated with the
connected client UaClient.NodeList can be a single OPC UA node object or an array of nodes.

[Values,Timestamps,Qualities] = readValue(NodeList) reads from the nodes identified by
NodeList. All nodes must be of the same connected client.

Examples

Read Value from Nodes

Read the current value from a node identified by its Index and Identifier.

UaClient = opcua('localhost',53530);
connect(UaClient);
sineNode = opcuanode(3,'Sinusoid',UaClient);
[val,ts,qual] = readValue(UaClient,sineNode)

Read from multiple nodes.

simNode = findNodeByName(UaClient.Namespace,'Simulation');
simChildNodes = simNode.Children;
[val,ts,qual] = readValue(UaClient,simChildNodes)

Input Arguments
UaClient — OPC UA client
OPC UA client object

OPC UA client, specified as an OPC UA client object. The client must be connected.

NodeList — List of nodes
array of node objects

List of nodes, specified as an array of node objects or a single node. You can create node objects
using getNamespace, browseNamespace, or opcuanode. For information on node object functions
and properties, type:

 readValue

19-193

help opc.ua.Node

You can read only from variable type nodes, not object type nodes. If you specify an object node to
read, the return value is an empty array, and the quality is set to Bad:AttributeIdInvalid.

Output Arguments
Values — Node values
node data type

Node values, returned as node data type, or a cell array of node data types if NodeList is an array..
For information about how MATLAB interprets these formats, type:

help opc.ua.DataTypeId

Timestamps — Time of node data source
vector of MATLAB datetime

Time of node data source, returned as a vector of MATLAB datetime objects. Timestamps represent
the time that the source provided the data to the server.

Qualities — Node data quality
array of OPC UA qualities

Node data quality, returned as an array of OPC UA qualities. For information on OPC UA qualities,
type:

 help opc.ua.QualityId

Version History
Introduced in R2015b

See Also
Functions
getNamespace | browseNamespace | opcuanode | writeValue

19 Functions

19-194

refresh
Read all active items in group

Syntax
refresh(GObj)
refresh(GObj,'Source')

Description
refresh(GObj) asynchronously reads data for all active items contained in the dagroup object
specified by GObj. Items whose Active property is set to 'off' will not be read. GObj can be an
array of group objects. The data is read from the OPC server's cache. You can use refresh only if the
Active property is set to 'on' for GObj.

When the refresh operation completes, a DataChange event is generated by the server. If a callback
function file is specified for the DataChangeFcn property, then the function executes when the event
is generated.

refresh is a special case of subscription that forces a DataChange event for all active items even if
the data has not changed. Note that refresh ignores the Subscription property.

refresh(GObj,'Source') asynchronously reads data from the source specified by 'Source',
which can be 'cache' or 'device'. If 'Source' is 'device', data is returned directly from the
device. If 'Source' is 'cache', data is returned from the OPC server’s cache. Note that reading
data from the device can be slow.

Examples
Configure a client, group, and item, for the Matrikon Simulation Server.

da = opcda('localhost','Matrikon.OPC.Simulation');
connect(da);
grp = addgroup(da,'ExRefresh');
itm = additem(grp,'Random.Real8');

Turn off subscription for the group and add a DataChangeFcn callback.

grp.Subscription = 'off';
grp.DataChangeFcn = 'disp(grp.Item)'

Call refresh to get group and item updates.

refresh(grp)
refresh(grp)

Version History
Introduced before R2006a

 refresh

19-195

See Also
Functions
read | readasync | write | writeasync

19 Functions

19-196

removepublicgroup
Remove public group from server

Syntax
removepublicgroup(DAObj,'PublicGroupName')

Description
removepublicgroup(DAObj,'PublicGroupName') removes the public group PublicGroupName
from the server that DAObj is connected to. DAObj must be a connected opcda object.

If the public group has clients using that group, removepublicgroup issues a warning; then it
removes the group from the server only when all clients have stopped using that group. No additional
clients can connect to that group after you call removepublicgroup.

Not all OPC data access servers support public groups. If you try to make a public group on a server
that does not support public groups, you get an error. To verify that a server supports public groups,
use the opcserverinfo function on the client connected to that server: Look for an entry
'IOPCPublicGroups' in the 'SupportedInterfaces' field.

Examples

Remove Public Group from Server

Connect to the server Dummy.Server and remove the public group named PGroup.

da = opcda('localhost','Dummy.Server');
connect(da);
removepublicgroup(da,'PGroup');

Version History
Introduced before R2006a

See Also
Functions
addgroup | makepublic

 removepublicgroup

19-197

resample
Package: opc.hda

Resample OPC HDA data object to have defined time stamps

Syntax
NewObj = resample(DObj,NewTS)
NewObj = resample(DObj,NewTS,'linear')
NewObj = resample(DObj,NewTS,'hold')
NewObj = resample(DObj,NewTS,'nearest')
NewObj = resample(DObj,NewTS,'spline')
NewObj = resample(DObj,NewTS,'pchip')

Description
NewObj = resample(DObj,NewTS) resamples data in OPC HDA data object DObj so that all
elements of the object have the time stamps given by NewTS. NewTS must be a vector of MATLAB
date numbers.

If DObj contains elements with the same item ID, those elements are combined into one element. So
the size of NewObj might be smaller than the size of DObj.

Values are linearly interpolated or extrapolated to the new time stamps.

Quality for the resampled data is set as follows:

• All original values retain their quality.
• All interpolated values get a quality of Interpolated: Good.
• All extrapolated values get a quality of Interpolated: Sub-Normal.

NewObj = resample(DObj,NewTS,'linear') uses linear interpolation.

NewObj = resample(DObj,NewTS,'hold') uses a zero-order hold interpolation where the
previous known value is used for all new time stamps. Any time stamp prior to the first known value
is set to NaN (or 0 if the value is a fixed-point data type).

NewObj = resample(DObj,NewTS,'nearest') uses nearest-neighbor interpolation as defined by
interp1.

NewObj = resample(DObj,NewTS,'spline') uses spline interpolation as defined by interp1.

NewObj = resample(DObj,NewTS,'pchip') uses shape-preserving, piece-wise, cubic
interpolation as defined by interp1.

Examples
Load the OPC HDA example data file and resample the first element of hdaDataSmall.

19 Functions

19-198

load opcSampleHdaData;
newTS = datenum(2010,6,1,9,30,0:10:60);
newObj = resample(hdaDataSmall(1),newTS);

Display the values and qualities of the new object.

newObj.showValues

See Also
Functions
interp1 | showValues | tsintersect | tsunion

 resample

19-199

save
Save OPC objects to MAT-file

Syntax
save FileName
save FileName Obj1 Obj2 ...
save('FileName','Obj1','Obj2', ___)

Description
save FileName saves all variables in the MATLAB workspace to the specified MAT-file, FileName.
If an extension is not specified for FileName, then a .mat extension is used.

save FileName Obj1 Obj2 ... saves OPC objects, Obj1, Obj2, ... to the specified MAT-file,
FileName. If an extension is not specified for FileName, then a .mat extension is used.

save('FileName','Obj1','Obj2', ___) provides the functional form of syntax. When using the
functional form, you must specify the file name and toolbox objects as character vectors or strings.

Any data associated with the toolbox object will not be stored in the MAT-file. The data can be
brought into the MATLAB workspace with getdata and then saved to the MAT-file using a separate
variable name.

The load command is used to return variables from the MAT-file to the MATLAB workspace. Values
for read-only properties will be restored to their default values upon loading. For example, the Status
property for an opcda object will be restored to 'disconnected'. You use propinfo to determine
if a property is read-only.

Examples
Create a connected client and configure a group with two items. Then save the group.

da = opcda('localhost','Matrikon.OPC.Simulation');
connect(da);
grp = addgroup(da,'ClearEventLogEx');
itm1 = additem(grp,'Random.Real8');
save mygroup grp

Version History
Introduced before R2006a

See Also
Functions
getdata | load | opchelp | propinfo

19 Functions

19-200

serveritemprops
Property information for items in OPC server name space

Syntax
S = serveritemprops(DAObj,ItemID)
S = serveritemprops(DAObj,ItemID,PropID)

Description
S = serveritemprops(DAObj,ItemID) returns all property information for the OPC server items
specified by ItemID. ItemID is a single, fully qualified ItemID, specified as a character vector or
string. DAObj is an opcda object connected to the OPC server. S is a structure array with the
following fields:

Field Name Description
PropID The property number
PropDescription The property description
PropValue The property value

The number of properties returned by the server may be different for different ItemIDs.

Item properties include the item's canonical data type, limits, description, current value, etc.

S = serveritemprops(DAObj,ItemID,PropID) returns property information for the property
IDs contained in PropID. PropID is a vector of integers. If PropID contains IDs that do not exist for
that property, a warning is issued and any remaining property information is returned.

Note This function is not intended to read large amounts of data. Instead, it allows you to easily
browse and read small amounts of data specific to a particular ItemID.

For a complete list of Property IDs defined by the OPC Foundation, consult “OPC DA Server Item
Properties” on page B-2.

Examples
Find the properties of the Matrikon Simulation Server Random.Real4 tag.

da = opcda('localhost','Matrikon.OPC.Simulation');
connect(da);
p = serveritemprops(da,'Random.Real4');

Read the first property to see the item canonical data type.

p(1)

Read the third property to see the item quality.

 serveritemprops

19-201

p(3)

Version History
Introduced before R2006a

See Also
Functions
serveritems

19 Functions

19-202

serveritems
Query server or name space for fully qualified item IDs

Syntax
FQID = serveritems(DAObj,ItemID)
FQID = serveritems(DAObj)
FQID = serveritems(DAObj, 'Filter1',Val1,'Filter2',Val2, ...)
FQID = serveritems(NS)
FQID = serveritems(NS,ItemID)

Description
FQID = serveritems(DAObj,ItemID) returns a cell array of all fully qualified item IDs matching
ItemID that are found on the OPC server defined by DAObj. DAObj must be a connected opcda
object. ItemID is a partial character vector or string to search for, and can contain the wildcard
character '*'. FQID is a character vector or cell array of character vectors. You can use FQID in a
call to additem to construct daitem objects.

FQID = serveritems(DAObj) returns all fully qualified item IDs on the OPC server associated
with DAObj.

FQID = serveritems(DAObj, 'Filter1',Val1,'Filter2',Val2, ...) allows you to filter
the retrieved name space based on a number of available browse filters. Available filters are
described in the following table:

Browse Filter Description
'StartItemID' Specify the FullyQualifiedID of a branch node, as a character vector or

string. Only nodes contained in that branch node will be returned. Some
OPC servers do not support partial name space retrieval based on this
option: An error is generated if you attempt to use the 'StartItemID'
browse filter on such a server.

'Depth' Specify the depth of the name space that you want returned. A 'Depth'
value of 1 returns only the nodes contained in the starting position. A
'Depth' value of 2 returns the nodes contained in the starting position
and all of their nodes. A 'Depth' value of Inf returns all nodes.

'AccessRights' Restricts the search to leaf nodes with particular access right
characteristics. Specify 'read' to return nodes that include the read
access right, and 'write' to return nodes that include the write access
right. An empty character vector ('') returns nodes with any access rights.

'DataType' Restricts the search to nodes with a particular canonical data type. Valid
data types are 'double', 'single', 'int8', 'int16', 'int32',
'uint8', 'uint16', 'uint32', 'logical', 'currency', and 'date'.
Use the 'DataType' filter to find server items with a specific data type,
such as 'double' or 'date'.

 serveritems

19-203

FQID = serveritems(NS) and FQID = serveritems(NS,ItemID) search the name space
structure defined by NS, rather than querying the OPC server. NS is the result of a call to
getnamespace in either hierarchical or flat format.

Note that some servers may return item IDs that cannot be created on that server. These item IDs are
usually branches of the OPC server name space.

You use the results of a call to serveritems in a call to serveritemprops to return the property
information for items in the OPC server name space. The properties of the items in the server name
space include the server item's canonical data type, limits, description, current value, etc.

Examples
Create a client for the Matrikon Simulation Server and connect to the server:

da = opcda('localhost', 'Matrikon.OPC.Simulation');connect(da);

Find all item IDs in the Matrikon Server containing the word 'Real':

realItmIDs = serveritems(da, '*Real*'):

Add all items in the Random node to a group:

grp = addgroup(da, 'ServerItemsEx');
itm = additem(grp, serveritems(da, 'Random.*'));

Version History
Introduced before R2006a

See Also
getnamespace | serveritemprops

19 Functions

19-204

set
Configure or display OPC object properties

Syntax
set(Obj)
Prop = set(Obj)
set(Obj,'PropertyName')
Prop = set(Obj,'PropertyName')
set(Obj,'PropertyName',PropertyValue)
set(Obj,S)
set(Obj,PN,PV)
set(Obj,'PropName1',PropValue1,'PropName2',PropValue2,...)

Description
set(Obj) displays property names and any enumerated values for all configurable properties of OPC
object Obj. Obj must be a single toolbox object.

Prop = set(Obj) returns all property names and their possible values for object Obj. Obj must be
a single object. The return value, Prop, is a structure whose field names are the property names of
Obj, and whose values are cell arrays of possible property values or empty cell arrays if the property
does not have a finite set of possible character vector values.

set(Obj,'PropertyName') displays the possible values for the specified property, PropertyName,
of toolbox object Obj. Obj must be a single object.

Prop = set(Obj,'PropertyName') returns the possible values for the specified property,
PropertyName, of object Obj. The returned array, Prop, is a cell array of possible value character
vectors or an empty cell array if the property does not have a finite set of possible character vector
values.

set(Obj,'PropertyName',PropertyValue) sets the value, PropertyValue, of the specified
property, PropertyName, for object Obj. Obj can be a vector of toolbox objects, in which case set
sets the property values for all the objects specified.

Note that if Obj is connected to an OPC server, configuring server-specific properties such as
UpdateRate and DeadbandPercent might be time consuming.

set(Obj,S) where S is a structure whose field names are object property names, sets the
properties named in each field name to the values contained in the structure.

set(Obj,PN,PV) sets the properties specified in the cell array of character vectors or string array,
PN, to the corresponding values in the cell array PV, for all objects specified in Obj. The cell array PN
must be a vector, but the cell array PV can be M-by-N, where M is equal to length(Obj) and N is
equal to length(PN), so that each object will be updated with a different set of values for the list of
property names contained in PN.

set(Obj,'PropName1',PropValue1,'PropName2',PropValue2,...) sets multiple property
values with a single statement.

 set

19-205

Note that it is permissible to use name-value pairs, structures, and name-value cell array pairs in the
same call to set.

Examples
Create an opcda object and add a group to that object.

da = opcda('localhost','Dummy.Server');
grp = addgroup(da,'SetExample');

Set the opcda object’s Timeout to 300 seconds, and restrict the event log to 2000 entries.

set(da,'Timeout',300,'EventLogMax',2000);

Set multiple properties using cell array pairs.

set(da,{'Name','ServerID'},{'My Opcda object','OPC.Server.1'});

Set the group name.

set(grp,'Name','myopcgroup');

Query the permissible values for the group’s Subscription property.

set(grp,'Subscription')

Tips
As an alternative to the set function, you can directly assign property values using dot-notation. The
following two lines achieve the same result.

set(daObj,'Timeout',10);
daObj.Timeout = 10;

Version History
Introduced before R2006a

See Also
Functions
get | opchelp | propinfo

19 Functions

19-206

setSecurityModel
Package: opc.ua

Set security configuration parameters for OPC UA client

Syntax
setSecurityModel(UaClient,'Best')
setSecurityModel(UaClient,MessageMode,ChannelPolicy)

Description
setSecurityModel(UaClient,'Best') sets both the MessageSecurityMode and
ChannelSecurityPolicy properties of the OPC UA client UaClient to the best possible security
configuration available for the server. The client attempts to retrieve available endpoints from the
server if those are not yet retrieved.

setSecurityModel(UaClient,MessageMode,ChannelPolicy) sets the
MessageSecurityMode and ChannelSecurityPolicy properties of OPC UA client UaClient to
the specified MessageMode and ChannelPolicy, respectively. If a matching endpoint cannot be
found in the list of known endpoints, an error occurs.

Examples

Set Security Mode

Set the OPC UA client security mode for signed but not encrypted messages.

s = opcuaserverinfo('localhost');
UaClient = opcua(s);
setSecurityModel(UaClient,'Sign');
connect(UaClient);

Input Arguments
UaClient — OPC UA client
opc.ua.Client object

OPC UA client, specified as an opc.ua.Client object. You can create the client using the opcua
function.
Example: opcua()

MessageMode — Client message security mode
'None' | 'Sign' | 'SignAndEncrypt'

Client message security mode, specified as a character vector or string. Either MessageMode or
ChannelPolicy can be empty, but not both. In this case, the highest security model is chosen from
the available endpoints to match the given option.

 setSecurityModel

19-207

Example: 'Sign'
Data Types: char | string

ChannelPolicy — Client channel security policy
char | string

Client channel security policy, specified as a character vector or string.

ChannelPolicy must be specified as one of the enumerations defined in
opc.ua.ChannelSecurityPolicies. For example,

enumeration opc.ua.ChannelSecurityPolicies

Enumeration members for class 'opc.ua.ChannelSecurityPolicies':

 Unknown
 None
 Aes128_Sha256_RsaOaep
 Basic256Sha256
 Aes256_Sha256_RsaPss

Example: 'Basic256Sha256'
Data Types: char | string

Version History
Introduced in R2020a

R2023a: Basic128Rsa15 and Basic256 Policy Support Being Removed
Warns starting in R2023a

Support for the Basic128Rsa15 and Basic256 security policies will be removed in a future release.
Consider using one of the following security policies instead: Aes128_Sha256_RsaOaep,
Aes256_Sha256_RsaPss, or Basic256Sha256.

See Also
Functions
opcua | connect (opcua) | exportClientCertificate

Topics
“OPC UA Security” on page 17-7
“OPC UA Certificate Management” on page 17-9

19 Functions

19-208

showopcevents
Event log summary for OPC events

Syntax
showopcevents(DAObj)
showopcevents(DAObj,Index)
showopcevents(Struct)
showopcevents(Struct,Index)

Description
showopcevents(DAObj) displays a summary of the event log for the opcda object specified by
DAObj.

showopcevents(DAObj,Index) displays a summary of the events with index of Index. Index can
be the numerical index, a character vector, or a cell array of character vectors that specifies the type
of event. Valid events are CancelAsync, Error, ReadAsync, Shutdown, Start, Stop, and
WriteAsync.

showopcevents(Struct) and showopcevents(Struct,Index) display a summary of the events
with index of Index for the event structure, Struct. You can obtain an event structure from the
object's EventLog property.

The display summary includes the event type, the local time the event occurred, and additional event-
specific information.

Examples
Configure a logging task for the Matrikon Simulation Server, then display the event log to find timing
information for the logging task:

da = opcda('localhost','Matrikon.OPC.Simulation');
connect(da)
grp = addgroup(da);
grp.RecordsToAcquire = 10;
itm = additem(grp,'Bucket Brigade.Real8');
start(grp);
wait(grp);
showopcevents(da);

Version History
Introduced before R2006a

See Also
opccallback

 showopcevents

19-209

showValues
Class: opc.hda.Data
Package: opc.hda

Display table of values for OPC HDA data object

Syntax
showValues(dObj)

Description
showValues(dObj) displays a table of values for OPC HDA object hdaObj. If hdaObj is a scalar
object, the table lists each time stamp with its corresponding value and quality.

If hdaObj is an array with all items having the same time stamps, the table shows the time stamp
followed by each item's value.

If hdaObj is an array with items having different time stamps, an error is generated. Use the
tsunion method to generate an array with each item containing the same time stamps.

The date format for the time stamps is controlled by the OPC date display preference, which you can
set by using opc.setDateDisplayFormat.

Examples
Load the OPC HDA example data file and show the values of the first hdaDataSmall object:

load opcSampleHdaData;
showValues(hdaDataSmall(1))

See Also
disp

19 Functions

19-210

single
Package: opc.hda

Convert OPC HDA data object array to single matrix

Syntax
Vsingle = single(DObj)

Description
Vsingle = single(DObj) converts the OPC HDA data object array DObj into a matrix of data type
single.

DObj must have the same time stamps for each of the Item IDs (elements of DObj), otherwise an
error is generated. Use tsunion, tsintersect, or resample to generate an OPC HDA data object
containing the same time stamp for all items in the object.

Examples

Convert OPC HDA Data to Matrix of singles

Load the OPC HDA example data file, convert the hdaDataSmall object to have the same time
stamps, and create a matrix of type single from the result.

load opcSampleHdaData;
dUnion = tsunion(hdaDataSmall);
Vsingle = single(dUnion);

Input Arguments
DObj — OPC HDA data
OPC HDA data object array

OPC HDA data, specified as an OPC HDA data object array.

Output Arguments
Vsingle — OPC HDA data values
matrix of single type

OPC HDA data values, returned as a matrix of single type. Vsingle is constructed as an M-by-N
matrix of single values, where M is the number of items in DObj and N is the number of time stamps
in the array.

Version History
Introduced in R2011a

 single

19-211

See Also
Functions
resample | tsintersect | tsunion

19 Functions

19-212

stairs
Package: opc

Plot OPC HDA data object as stairstep graph

Syntax
stairs(dObj)
pH = stairs(dObj)

Description
stairs(dObj) plots the data in OPC HDA data object dObj as a series of stair steps. Each element
of dObj is plotted into the current axes as the value against its time stamp. Quality is not displayed in
the plot.

pH = stairs(dObj) returns the handles to the created stairseries objects in pH.

In all cases, if the current plot is not held, the X-axis is updated using datetick to show date ticks
instead of numeric ticks.

Examples
Load the OPC HDA example data file and plot the hdaDataVis object as a stairstep graph:

load opcSampleHdaData;
stairs(hdaDataVis)

See Also
datetick | plot | stairs

 stairs

19-213

start
Start a logging task

Syntax
start(GObj)

Description
start(GObj) starts a data logging task for GObj. GObj can be a scalar dagroup object, or a vector
of dagroup objects. A dagroup object must be active and contain at least one item for start to
succeed.

When logging is started, GObj performs the following operations:

1 Generates a Start event, and executes the StartFcn callback.
2 If Subscription is 'off', sets Subscription to 'on' and issues a warning.
3 Removes all records associated with the object from the toolbox engine.
4 Sets RecordsAcquired and RecordsAvailable to 0.
5 Sets the Logging property to 'on'.

The Start event is logged to the EventLog.

GObj will stop logging when a stop command is issued, or when RecordsAcquired reaches
RecordsToAcquire.

Examples
Configure and start a logging task for 30 seconds of data:

da = opcda('localhost','Matrikon.OPC.Simulation');
connect(da);
grp = addgroup(da,'StartEx');
itm1 = additem(grp,'Triangle Waves.Real8');
itm2 = additem(grp,'Saw-toothed Waves.UInt16');
grp.LoggingMode = 'memory';
grp.UpdateRate = 0.5;
grp.RecordsToAcquire = 60;
start(grp);

Wait for the logging task to finish, then retrieve the records into a double array and plot the data
with a legend:

wait(grp);
[itmID, val, qual, tStamp] = getdata(grp, 'double');
plot(tStamp(:,1), val(:,1), tStamp(:,2), val(:,2));
legend(itmID);
datetick x keeplimits

19 Functions

19-214

Version History
Introduced before R2006a

See Also
flushdata | getdata | peekdata | stop | wait

 start

19-215

stop
Stop a logging task

Syntax
stop(GObj)

Description
stop(GObj) stops all logging tasks associated with the dagroup object GObj. GObj can be a
dagroup object or a vector of dagroup objects. When the function stops a logging task, it sets the
object's Logging property value to 'Off', and triggers execution of the object's StopFcn callback.

A dagroup object also stops running when the logging task has acquired all the requested records.
This occurs when RecordsAcquired equals RecordsToAcquire.

The object's EventLog property records the Stop event.

Examples
Configure and start a logging task for 30 seconds of data:

da = opcda('localhost','Matrikon.OPC.Simulation');
connect(da);
grp = addgroup(da,'ExOPCREAD');
itm1 = additem(grp,'Triangle Waves.Real8');
itm2 = additem(grp,'Saw-Toothed Waves.Int2');
grp.LoggingMode = 'memory';
grp.UpdateRate = 0.5;
grp.RecordsToAcquire = 60;
start(grp);

Stop the logging task after 5 seconds:

wait(5);
stop(grp);

Version History
Introduced before R2006a

See Also
start | wait

19 Functions

19-216

subscribe
Package: icomm.mqtt

Subscribe to MQTT topic

Syntax
SubscrTable = subscribe(mqttClient,mqttTopic)
SubscrTable = subscribe(mqttClient,mqttTopic,Name=Value)

Description
SubscrTable = subscribe(mqttClient,mqttTopic) subscribes the MQTT client to the
specified MQTT topic, and returns a table listing all subscriptions for that client.

SubscrTable = subscribe(mqttClient,mqttTopic,Name=Value) specifies additional
subscription behaviors using optional name-value pairs.

Examples

Subscribe to MQTT Topics

Create an MQTT client connected to the Eclipse HiveMQ™ public broker and subscribe to several
topics with different options.

Subscribe to the topic "trubits/mqTop48".

mqttClient = mqttclient("tcp://broker.hivemq.com");
mySub = subscribe(mqttClient,"trubits/mqTop48")

mySub =

 1×3 table

 Topic QualityOfService Callback
 _________________ ________________ ________

 "trubits/mqTop48" 0 ""

mySub = subscribe(mqttClient, "trubits/mqTmp52",QualityOfService=2)

mySub =

 2×3 table

 Topic QualityOfService Callback
 _________________ ________________ ________

 "trubits/mqTop48" 0 ""
 "trubits/mqTmp52" 2 ""

Create a callback function in the file showmessage.m that displays the topic and received message.

 subscribe

19-217

function showMessage(topic,data)
 disp(topic);
 disp(data);
end

Subscribe to a topic to have the callback executed when a message is received.

mySub = subscribe(mqttClient,"trubits/mqTsp61",Callback=@showmessage)

mySub =

 3×3 table

 Topic QualityOfService Callback
 _________________ ________________ _____________

 "trubits/mqTop48" 0 ""
 "trubits/mqTmp52" 2 ""
 "trubits/mqTsp61" 0 "showmessage"

Input Arguments
mqttClient — MQTT client
Client object

MQTT client specified as an icomm.mqtt.Client object, created with the mqttclient function.
Example: mqttClient = mqttclient()
Data Types: object

mqttTopic — MQTT topic
string | char

MQTT topic to subscribe to, specified as a string or character vector.
Example: "trubits/mqTop48"
Data Types: string | char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: Callback="showMsg"

QualityOfService — Quality of Service (QoS)
0 (default) | 1 | 2

Quality of Service (QoS) for message delivery, specified as an integer value of 0, 1, or 2:

• 0 — Messages delivered at most once, not more (default).
• 1 — Messages delivered at least once, not less.
• 2 — Messages delivered exactly once, not more or less.

Example: QualityOfService=1

19 Functions

19-218

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Callback — Function to execute when message received
function handle | string | char

Function to execute when a message is received on the subscribed topic, specified as a function
handle, string, or character vector. The function is called with two input arguments (topic, data) in
that order.
Example: Callback=@notifyUser
Data Types: char | string | function_handle

Output Arguments
SubscrTable — Subscriptions table
table

Table of all topics that the MQTT client is subscribed to.

Version History
Introduced in R2022a

See Also
Functions
mqttclient | read | unsubscribe | peek | flush

 subscribe

19-219

tags
Package: icomm.pi

List tags from OSIsoft PI server

Syntax
tagList = tags(piClient)
tagList = tags(piClient,Name=tagName)

Description
tagList = tags(piClient) returns a list of all tags available from the OSIsoft PI that the client
piCient is connected to. A tag is used by the PI system as an alias or shortcut to represent an asset
attribute such as voltage, current, temperature, etc. Some tag names are short, others might be long
and descriptive or include a unique ID.

tagList = tags(piClient,Name=tagName) filters the list of available tags to match the name
specified by tagName. The wildcard character * is supported for partial string or pattern matching.

Examples

Find Tags on an OSIsoft PI Server

Request a list of all tags from the server.

tagList = tags(piClient);

Request a list of all tags from the server containing a matching string.

tagList = tags(piClient,"*pressure*");

Input Arguments
piClient — Client connected to OSIsoft PI server
icomm.pi.Client object

Client connected to OSIsoft PI server, specified as an icomm.pi.Client object. You create the
object with the piclient function.
Example: piClient = piclient(_)
Data Types: object

tagName — Tag name to match on
string | char

Tag name to match on, specified as a string or character vector. You can use the wildcard * character
to perform partial matching. For example:

19 Functions

19-220

"tagName" matches only the exact name tagName.
"tagName*" matches tags that start with tagName.
"*tagName*" matches tags containing tagName anywhere in their name.

Example: "Power*"
Data Types: char | string

Output Arguments
tagList — List of tags from OSIsoft PI server
table

List of tags from OSIsoft PI server, returned as an N-by-1 table of strings with one tag per row.

Version History
Introduced in R2022a

See Also
Functions
piclient | read

 tags

19-221

trend
Display graphical trend of OPC data for group

Syntax
H = trend(GObj)
H = trend(GObj, 'PropertyName', PropertyValue,...)

Description
H = trend(GObj) displays the newest 100 points of live data for the items defined in the dagroup
object GObj in the current axes. GObj must be an active group containing one or more items. The
handles to the created Handle Graphics® objects are returned in H.

All the items are displayed in the same axes, with no scaling. New data is displayed on the far right of
the axes, and oldest data is displayed on the left. If no old data exists (such as at the beginning of a
plot), the axes are empty. The Handle Graphics objects (including the axis limits) are updated with
new data whenever the group object receives a Data Change event from the OPC server.

H = trend(GObj, 'PropertyName', PropertyValue,...) allows you to pass additional
property/value pairs to specify additional properties of the created plots. Special property/value pairs
are listed in the following table. If any property is not in this list, that property/value pair is passed on
to the created Handle Graphics objects.

Property Name Description Default
DisplayTime Defines the number of seconds of history to

display in the plot.
100*gObj.UpdateRate

Parent Defines the parent axes objects in which to
display the trends. The value can be a scalar,
or a vector the same length as the number of
items in GObj. If the value is a vector, each
item's value is displayed in the respective
axes object.

Current axes

PlotType Defines the plot types for each item. Valid plot
types are 'line', 'stairs', and 'stem'.
The value can be a scalar, or a cell array the
same length as the number of items in GObj.
If the value is a cell array of character
vectors, each item’s plot type is set to the
respective plot type in the value array.

'line'

DateTimeFormat Sets the display format for the x-axis of all
axes objects into which data is plotted.
DateTimeFormat must be one of the date
formats recognized by datetime.

Depends on system locale. See “Set
Date and Time Display Format”.

19 Functions

19-222

Property Name Description Default
BufferTime Defines the number of seconds of history to

store for all items. Setting this value to a
number greater than the value of
DisplayTime allows you to pause the trend
(by setting the Subscription property of
the group to 'off') and panning the axes in
question.

10*DisplayTime

You can fix the axes y-limits to a particular value by using the YLim property of the axes containing
your visualized data. For example, to set the limits of the y-axis to the instrument range reported by
the OPC server, use the following code:

props = serveritemprops(da,itmName,102:103);
currentAxes = gca;
currentAxes.YLim = [props.PropValue];

If you add items to a group that currently has an active trend, the item is not shown. Call trend
again to include that item in the trend view. (If you set the hold state of the axes to 'on', when you
call trend, existing trend objects are reused, without destroying their current view.)

If you delete an item from a group that currently has an active trend, the trend display shows no data
for that item, and the item’s trend eventually disappears off the graph.

This function overwrites the following properties of the group object:

• The DataChangeFcn property is set to update the axes with new data whenever it is received from
the OPC server. If there is an existing DataChangeFcn callback, the trend functionality
overwrites the callback.

• The Subscription property is configured to 'on' to receive Data Change events from the OPC
server. You can change Subscription to 'off' after calling trend, in which case the trend
stops updating until you set Subscription back to 'on' or issue a readasync command.

Examples
Configure a group with two items:

da = opcda('localhost','Matrikon.OPC.Simulation');
connect(da);
grp = addgroup(da,'ExOPCTREND');
itm1 = additem(grp,'Triangle Waves.Real8');
itm2 = additem(grp,'Saw-Toothed Waves.Int2');

Create a trend showing the last two minutes of data in two separate axes:

ax1 = subplot(2,1,1);
ax2 = subplot(2,1,2);
trend(grp,'DisplayTime',120,'Parent',[ax1,ax2]);

Version History
Introduced in R2007b

 trend

19-223

R2023a: DateFormat Argument Being Removed
Warns starting in R2023a

The DateFormat name-value argument will be removed in a future release. Use DateTimeFormat
instead.

See Also
Functions
datetime | hold

19 Functions

19-224

tsintersect
Class: opc.hda.Data
Package: opc.hda

Intersection of time stamp in OPC HDA data object

Syntax
NewObj = tsintersect(DObj)

Description
NewObj = tsintersect(DObj) resamples data in OPC HDA data object DObj so that all elements
of the object have the same time stamps given by the intersection of all time stamps in all elements of
DObj.

If DObj contains elements with the same item ID, those elements are combined into one element. So
the size of NewObj might be smaller than the size of DObj.

Examples
Load the OPC HDA example data file and find all common values of hdaDataSmall:

load opcSampleHdaData;
newObj = tsintersect(hdaDataSmall);

Display the values and qualities of the new object:

newObj.showValues

See Also
resample | tsunion | showValues

 tsintersect

19-225

tsunion
Class: opc.hda.Data
Package: opc.hda

Union of time stamps in an OPC HDA data object

Syntax
NewObj = tsunion(DObj)
NewObj = tsunion(DObj,'linear')
NewObj = tsunion(DObj,'hold')
NewObj = tsunion(DObj,'nearest')
NewObj = tsunion(DObj,'spline')
NewObj = tsunion(DObj,'pchip')

Description
NewObj = tsunion(DObj) merges the time stamps of all items (elements) in data object DObj, so
that each element of NewObj has the same time stamp vector corresponding to all possible time
stamps in all elements of DObj. For each element, values are linearly interpolated or extrapolated
where that time stamp does not exist for an item (element of the Data object).

If DObj contains elements with the same item ID, those elements are combined into one element. So
the size of NewObj might be smaller than the size of DObj.

Quality for the resampled data is set as follows:

• All original values retain their quality.
• All interpolated values get a quality of Interpolated: Good.
• All extrapolated values get a quality of Interpolated: Sub-Normal.

NewObj = tsunion(DObj,'linear') uses linear interpolation.

NewObj = tsunion(DObj,'hold') uses a zero-order hold interpolation where the previous known
value is used for all new time stamps. Any time stamp prior to the first known value is set to NaN (or 0
if the value is a fixed-point data type).

NewObj = tsunion(DObj,'nearest') uses nearest-neighbor interpolation as defined by
interp1.

NewObj = tsunion(DObj,'spline') uses spline interpolation as defined by interp1.

NewObj = tsunion(DObj,'pchip') uses shape-preserving, piece-wise, cubic interpolation as
defined by interp1.

For data objects containing character vector values, only the 'hold' method can be used.

Examples
Load the OPC HDA example data file and find the time stamp union of hdaDataSmall:

19 Functions

19-226

load opcSampleHdaData;
newObj = tsunion(hdaDataSmall);

Find the union using 'hold' resampling:

newObjHold = tsunion(hdaDataSmall, 'hold');

See Also
interp1 | resample | showValues | tsintersect

 tsunion

19-227

uint16
Package: opc.hda

Convert OPC HDA data object array to uint16 matrix

Syntax
Vuint16 = uint16(DObj)

Description
Vuint16 = uint16(DObj) converts the OPC HDA data object array DObj into a uint16 matrix.

DObj must have the same time stamps for each of the Item IDs (elements of DObj), otherwise an
error is generated. Use tsunion, tsintersect, or resample to generate an OPC HDA data object
containing the same time stamp for all items in the object.

Examples

Convert OPC HDA Data to uint16 Matrix

Load the OPC HDA example data file, convert the hdaDataSmall object to have the same time
stamps, and create a uint16 matrix from the result.

load opcSampleHdaData;
dUnion = tsunion(hdaDataSmall);
Vuint16 = uint16(dUnion);

Input Arguments
DObj — OPC HDA data
OPC HDA data object array

OPC HDA data, specified as an OPC HDA data object array.

Output Arguments
Vuint16 — OPC HDA data values
uint16 matrix

OPC HDA data values, returned as a uint16 matrix. Vuint16 is constructed as an M-by-N matrix of
uint16 values, where M is the number of items in DObj and N is the number of time stamps in the
array.

Version History
Introduced in R2011a

19 Functions

19-228

See Also
Functions
resample | tsintersect | tsunion

 uint16

19-229

uint32
Package: opc.hda

Convert OPC HDA data object array to uint32 matrix

Syntax
Vuint32 = uint32(DObj)

Description
Vuint32 = uint32(DObj) converts the OPC HDA data object array DObj into a uint32 matrix.

DObj must have the same time stamps for each of the Item IDs (elements of DObj), otherwise an
error is generated. Use tsunion, tsintersect, or resample to generate an OPC HDA data object
containing the same time stamp for all items in the object.

Examples

Convert OPC HDA Data to uint32 Matrix

Load the OPC HDA example data file, convert the hdaDataSmall object to have the same time
stamps, and create a uint32 matrix from the result.

load opcSampleHdaData;
dUnion = tsunion(hdaDataSmall);
Vuint32 = uint32(dUnion);

Input Arguments
DObj — OPC HDA data
OPC HDA data object array

OPC HDA data, specified as an OPC HDA data object array.

Output Arguments
Vuint32 — OPC HDA data values
uint32 matrix

OPC HDA data values, returned as a uint32 matrix. Vuint32 is constructed as an M-by-N matrix of
uint32 values, where M is the number of items in DObj and N is the number of time stamps in the
array.

Version History
Introduced in R2011a

19 Functions

19-230

See Also
Functions
resample | tsintersect | tsunion

 uint32

19-231

uint64
Package: opc.hda

Convert OPC HDA data object array to uint64 matrix

Syntax
Vuint64 = uint64(DObj)

Description
Vuint64 = uint64(DObj) converts the OPC HDA data object array DObj into a uint64 matrix.

DObj must have the same time stamps for each of the Item IDs (elements of DObj), otherwise an
error is generated. Use tsunion, tsintersect, or resample to generate an OPC HDA data object
containing the same time stamp for all items in the object.

Examples

Convert OPC HDA Data to uint64 Matrix

Load the OPC HDA example data file, convert the hdaDataSmall object to have the same time
stamps, and create a uint64 matrix from the result.

load opcSampleHdaData;
dUnion = tsunion(hdaDataSmall);
Vuint64 = uint64(dUnion);

Input Arguments
DObj — OPC HDA data
OPC HDA data object array

OPC HDA data, specified as an OPC HDA data object array.

Output Arguments
Vuint64 — OPC HDA data values
uint64 matrix

OPC HDA data values, returned as a uint64 matrix. Vuint64 is constructed as an M-by-N matrix of
uint64 values, where M is the number of items in DObj and N is the number of time stamps in the
array.

Version History
Introduced in R2011a

19 Functions

19-232

See Also
Functions
resample | tsintersect | tsunion

 uint64

19-233

uint8
Package: opc.hda

Convert OPC HDA data object array to uint8 matrix

Syntax
Vuint8 = uint8(DObj)

Description
Vuint8 = uint8(DObj) converts the OPC HDA data object array DObj into a uint8 matrix.

DObj must have the same time stamps for each of the Item IDs (elements of DObj), otherwise an
error is generated. Use tsunion, tsintersect, or resample to generate an OPC HDA data object
containing the same time stamp for all items in the object.

Examples

Convert OPC HDA Data to uint8 Matrix

Load the OPC HDA example data file, convert the hdaDataSmall object to have the same time
stamps, and create a uint8 matrix from the result.

load opcSampleHdaData;
dUnion = tsunion(hdaDataSmall);
Vuint8 = uint8(dUnion);

Input Arguments
DObj — OPC HDA data
OPC HDA data object array

OPC HDA data, specified as an OPC HDA data object array.

Output Arguments
Vuint8 — OPC HDA data values
uint8 matrix

OPC HDA data values, returned as a uint8 matrix. Vuint8 is constructed as an M-by-N matrix of
uint8 values, where M is the number of items in DObj and N is the number of time stamps in the
array.

Version History
Introduced in R2011a

19 Functions

19-234

See Also
Functions
resample | tsintersect | tsunion

 uint8

19-235

unsubscribe
Package: icomm.mqtt

Unsubscribe from MQTT topics

Syntax
unsubscribe(mqttClient)
unsubscribe(mqttClient,Topic=mqttTopic)

Description
unsubscribe(mqttClient) unsubscribes the MQTT client from all its subscribed topics.

unsubscribe(mqttClient,Topic=mqttTopic) unsubscribes the MQTT client from the specified
topic, mqttTopic.

Examples

Unsubscribe from MQTT Topics

Unsubcribe a client from one, then from all MQTT topics.

View the subscriptions of a client.

mqttClient.Subscriptions

ans =

 3×3 table

 Topic QualityOfService Callback
 _________________ ________________ _____________

 "trubits/mqTop48" 0 ""
 "trubits/mqTmp52" 2 ""
 "trubits/mqTsp61" 0 "showmessage"

Unsubscribe from one topic.

unsubscribe(mqttClient,Topic="trubits/mqTsp61")
mqttClient.Subscriptions

ans =

 2×3 table

 Topic QualityOfService Callback
 _________________ ________________ ________

 "trubits/mqTop48" 0 ""
 "trubits/mqTmp52" 2 ""

19 Functions

19-236

Unsubscribe from all remaining topics.

unsubscribe(mqttClient)
mqttClient.Subscriptions

ans =

 0×3 empty table

Input Arguments
mqttClient — MQTT client
Client object

MQTT client specified as an icomm.mqtt.Client object, created with the mqttclient function.
Example: mqttClient = mqttclient()
Data Types: object

mqttTopic — MQTT topic
string | char

MQTT topic to unsubscribe from, specified as a string or character vector.
Example: "trubits/mqTop48"
Data Types: string | char

Version History
Introduced in R2022a

See Also
Functions
mqttclient | subscribe

 unsubscribe

19-237

PI Viewer
Visualize data from OSIsoft PI Server

Description
The PI Viewer allows you to graphically search and select tags on an OSIsoft PI Server, then plot
data from those tags.

Open the PI Viewer App
To open the PI Viewer app, at the MATLAB command line type:

viewer(piClient)

where piClient is the OSIsoft PI client created with the piclient function.

Examples

View Data from OSIsoft PI Server Tags

Create a piclient object and open the PI Viewer for reading tags from the OSIsoft PI Server.

piClient = piclient("pi-host-55");
viewer(piClient)

19 Functions

19-238

Select the tags you want to read from, and click the right-arrow to add them to the right-hand
column.

If you want to limit the date range, click the Start Date field and End Date field. A calendar pops up
for you to select the start and stop dates.

Select the type of graphs you want to view:

•
Click to plot all data points on a common time axis.

•

Click to generate a matrix of plots, displaying histograms and scatter plots by data groups,
in a manner similar to the gplotmatrix function.

The PI Viewer display might look something like this:

Version History
Introduced in R2022a

See Also
Functions
piclient | tags | read

 PI Viewer

19-239

wait
Suspend MATLAB execution until object stops logging

Syntax
wait(GObj)
wait(GObj,TSec)

Description
wait(GObj) suspends MATLAB execution until the group object GObj has stopped logging. GObj
must be a scalar dagroup object.

Use the wait function when you want to guarantee that all data is logged before another task is
performed.

You can press Ctrl+C to interrupt the wait function. An error message appears, and control returns
to the MATLAB command window.

wait(GObj,TSec) waits at most TSec seconds for GObj to stop logging. If the group object is still
logging when the timeout maximum value is exceeded, an error is generated.

Examples

Wait for Logging to Complete Before Plotting

Log 60 seconds of data and plot the results.

Log 60 seconds of data at 1-second intervals from the Matrikon simulation server tags
Random.Real8 and Random.UInt4. When logging is complete, display a message, then retrieve and
plot the data.

da = opcda('localhost','Matrikon.OPC.Simulation');
connect(da)
grp = addgroup(da,'WaitExample');
itm = additem(grp,{'Random.Real8','Random.UInt4'});
grp.RecordsToAcquire = 60;
grp.UpdateRate = 1;
start(grp);
wait(grp)
disp('Acquisition complete.')
[itmID,v,q,t]=getdata(grp,'double');
plot(t(:,1),v(:,1),t(:,2),v(:,2));
legend(itmID);

Input Arguments
GObj — OPC DA group
DA group object

19 Functions

19-240

OPC DA group, specified as a DA group object.
Example: addgroup()

TSec — Maximum wait time
seconds

Maximum wait time, specified as seconds in any numeric type.
Example: 60
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Version History
Introduced before R2006a

See Also
Functions
getdata | start | stop

 wait

19-241

write
Write values to group or items

Syntax
write(GObj,Values)
write(IObj,Values)

Description
write(GObj,Values) writes values to all the items contained in the dagroup object GObj. Values
is a cell array of values--one for each item. To ensure that a specific value is written to the correct
item object, you should construct the Values cell array based on the order of the items returned by
the Item property of GObj.

write(IObj,Values) writes values to all the items contained in the vector of daitem objects
specified by IObj.

The data types of the values do not need to match the canonical data type of the associated items.
However an error is returned if a data type conversion cannot be performed.

Because the values are written to the device, this operation might be slow. The function does not
return until it verifies that the device has actually accepted or rejected the data.

Note The behavior of an OPC server when writing NaN to an item is server-dependent. If you attempt
to write NaN to an OPC server, the value might be silently ignored by the OPC server. That is, the
server might not generate any events in response to writing NaN to an item.

Examples

Write Values to OPC DA Items

Configure a client, group, and items for the Matrikon Simulation Server.

da = opcda('localhost','Matrikon.OPC.Simulation');
connect(da);
grp = addgroup(da,'ExWrite');
itm = additem(grp,{'Bucket Brigade.Real8', ...
 'Bucket Brigade.String'});

Write and read values to and from the items.

write(grp,{23,'Hello World!'})
r1 = read(grp);

19 Functions

19-242

write(itm(1),15)
r2 = read(itm(1));

Input Arguments
GObj — OPC DA group
dagroup

OPC DA group, specified as a dagroup object.
Example: addgroup()

IObj — OPC DA items
daitem

OPC DA items, specified as an array of daitem objects.
Example: additem()

Values — Data values
cell

Data values, specified as a cell array.
Example: {23,'Label4'}
Data Types: cell

Version History
Introduced before R2006a

See Also
Functions
read | readasync | refresh | writeasync

 write

19-243

write
Package: icomm.mqtt

Write message to MQTT topic

Syntax
write(mqttClient,mqttTopic,mqttMsg)
write(mqttClient,mqttTopic,mqttMsg,Name=Value)

Description
write(mqttClient,mqttTopic,mqttMsg) writes the message string mqttMsg to the topic
mqttTopic from the connected client mqttClient.

write(mqttClient,mqttTopic,mqttMsg,Name=Value) uses additional options specified by one
or more name-value pair arguments.

Examples

Write Messages to an MQTT Topic

Create an MQTT client and write messages to a topic with various options.

Create an MQTT client connected to the Eclipse HiveMQ™ public broker and write a message to the
topic myTopic.

mqttClient = mqttclient("tcp://broker.hivemq.com");
write(mqttClient,"myTopic","Hello World")

Write to the topic with QualityOfService 2.

write(mqttClient,"myTopic","High Service Message",QualityOfService=2)

Write a message to be retained by the broker.
write(mqttClient,"myTopic","Msg for new subscribers",Retain=true)

Input Arguments
mqttClient — MQTT client
Client object

MQTT client specified as an icomm.mqtt.Client object, created with the mqttclient function.
Example: mqttClient = mqttclient()
Data Types: object

mqttTopic — MQTT topic
string | char

19 Functions

19-244

MQTT topic to write message to, specified as a string or character vector.
Example: "trubits/mqTop48"
Data Types: string | char

mqttMsg — MQTT message to write to topic
string | char

MQTT message to write to the topic, specified as a string or character vector.
Example: "Hello World"
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: QualityOfService=1

QualityOfService — Quality of Service (QoS)
0 (default) | 1 | 2

Quality of Service (QoS) for message delivery, specified as an integer value of 0, 1, or 2:

• 0 — Messages delivered at most once, not more (default).
• 1 — Messages delivered at least once, not less.
• 2 — Messages delivered exactly once, not more or less.

Example: QualityOfService=1
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Retain — Specify whether broke retains message
false (default) | true

Control whether the broker retains the message for any new subscriber to the topic, specified as a
logical false (default) or true.
Example: Retain=true
Data Types: logical

Version History
Introduced in R2022a

See Also
Functions
mqttclient | subscribe | read | peek

 write

19-245

write
Perform a write operation to the connected Modbus server

Syntax
write(m,target,address,values)
write(m,target,address,values,serverId)
write(m,'holdingregs',address,values,'precision')
write(m,'holdingregs',address,values,serverId,'precision')

Description
write(m,target,address,values) writes data to Modbus object m to target type target at the
starting address address using the values to write values. You can write to coils or holding
registers.

write(m,target,address,values,serverId) additionally specifies serverId, which is the
address of the server to send the write command to. serverId can be used for coils or holding
registers.

write(m,'holdingregs',address,values,'precision') additionally specifies precision,
which is the data format of the register being written. precision can be used only for holding
registers.

write(m,'holdingregs',address,values,serverId,'precision') additionally specifies
serverId and data format precision. You can both arguments together when the write target is
holding registers.

Examples

Write Coils Over Modbus

If the write target is coils, the function writes a contiguous sequence of 1–1968 coils to either on or
off in a remote device. A coil is a single output bit. A value of 1 indicates the coil is on and a value of 0
means it is off.

Write to 4 coils, starting at address 8289. The address parameter is the starting address of the coils
to write to, and it is a double. The values parameter is an array of values to write.

write(m,'coils',8289,[1 1 0 1])

You can also create a variable for the values to write.

values = [1 1 0 1];
write(m,'coils',8289,values)

19 Functions

19-246

Write Holding Registers Over Modbus

If the write target is holding registers, the function writes a block of 1–123 contiguous registers in a
remote device. Values whose representation is greater than 16 bits are stored in consecutive register
addresses.

Set the register at address 49153 to 2000.

write(m,'holdingregs',49153,2000)

Specify Server ID and Precision Options for the Write Operation

You can write to coils or holding registers and also specify the optional parameter for server ID, and
you can specify precision for holding registers. You can set either option by itself or set both the
serverId option and the precision option together. Both options should be listed after the
required arguments.

Write 3 values, starting at address 29473, at Server ID 2, converting to single precision.

write(m,'holdingregs',29473,[928.1 50.3 24.4],2,'single')

Input Arguments
target — Target area to write to
character vector | string

Target area to write to, specified as a character vector or string. You can perform a Modbus write
operation on two types of targets: coils and holding registers, so you must set the target type as
either 'coils' or 'holdingregs'. Target must be the first argument after the object name. This
example writes to 4 coils starting at address 8289.
Example: write(m,'coils',8289,[1 1 0 1])
Data Types: char

address — Starting address to write to
double

Starting address to write to, specified as a double. Address must be the second argument after the
object name. This example writes to 6 coils starting at address 5200.
Example: write(m,'coils',5200,[1 1 0 1 1 0])
Data Types: double

values — Array of values to write
double | array of doubles

Array of values to write, specified as a double or array of doubles. values must be the third
argument after the object name. If the target is coils, valid values are 0 and 1. If the target is holding
registers, valid values must be in the range of the specified precision. You can include the array of
values in the syntax, as shown here, or use a variable for the values.

This example writes to 4 coils starting at address 8289.

 write

19-247

Example: write(m,'coils',8289,[0 1 0 1])
Data Types: double

serverId — Address of the server to send the write command to
double

Address of the server to send the write command to, specified as a double. Server ID must be
specified after the object name, target, address, and values. If you do not specify a serverId, the
default of 1 is used. Valid values are 0-247, with 0 being the broadcast address. This example writes
8 coils starting at address 1 from server ID 3.
Example: write(m,'coils',1,[1 1 1 1 0 0 0 0],3);
Data Types: double

precision — Data format of the register being written to on the Modbus server
character vector | string

Data format of the register being written to on the Modbus server, specified as a character vector or
string. Precision must be specified after the object name, target, address, and values. Valid values are
'uint16', 'int16', 'uint32', 'int32', 'uint64', 'int64', 'single', and 'double'. This
argument is optional, and the default is 'uint16'.

Note that precision does not refer to the return type, which is always 'double'. It specifies how
to interpret the register data.

This example writes to 4 holding registers starting at address 2 using a precision of 'uint32'.
Example: write(m,'holdingregs',2,[100 200 300 500],'uint32');
Data Types: char

Version History
Introduced in R2017a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
modbus | read | writeRead | maskWrite

Topics
“Create a Modbus Connection” on page 18-3
“Configure Properties for Modbus Communication” on page 18-5
“Write Data to a Modbus Server” on page 18-14

19 Functions

19-248

writeasync
Asynchronously write values to group or items

Syntax
TransID = writeasync(GObj,Values)
TransID = writeasync(IObj,Values)

Description
TransID = writeasync(GObj,Values) asynchronously writes values to all the items contained in
the dagroup object GObj. Values is a cell array of values and is the same size as the number of
items in GObj. TransID is a unique transaction ID for the asynchronous request.

TransID = writeasync(IObj,Values) asynchronously writes values to all the items contained in
the vector of daitem objects specified by IObj.

To ensure that a specific value is written to the correct item object, you should construct the Values
cell array based on the order of the items returned by the Item property. Because the values are
written to the device, this operation might be time consuming.

The data types of the values do not need to match the canonical data type of the associated items. If a
data type conversion cannot be performed, a warning is issued.

When the asynchronous write operation completes, a write async event is generated by the server. If
a callback function file is specified for the WriteAsyncFcn property, then the function executes when
the event is generated.

Note The behavior of an OPC server when writing NaN to an item is server-dependent. If you attempt
to write NaN to an OPC server, the value might be silently ignored by the OPC server. That is, the
server might not generate any events in response to writing NaN to an item.

Examples
Configure a client, group, and items, for the Matrikon Simulation Server:

da = opcda('localhost', 'Matrikon.OPC.Simulation');
connect(da);
grp = addgroup(da, 'ExWrite');
itm = additem(grp, {'Bucket Brigade.Real8', ...
 'Bucket Brigade.String'});

Configure the WriteAsyncFcn callback to read from the group:

grp.WriteAsyncFcn = 'r=read(grp,''device'')';

Write values asynchronously to the group:

writeasync(grp, {123.456, 'MATLAB is great!'})

 writeasync

19-249

Version History
Introduced before R2006a

See Also
cancelasync | read | readasync | refresh | write

19 Functions

19-250

writeRead
Perform write and read operation on groups of holding registers in single Modbus transaction

Syntax
moddata = writeRead(m,writeAddress,values,readAddress,readCount)
moddata = writeRead(m,writeAddress,values,writePrecision,readAddress,
readCount,readPrecision)
moddata = writeRead(___ ,serverId)

Description
moddata = writeRead(m,writeAddress,values,readAddress,readCount) writes data to
Modbus object m at the starting address writeAddress using the values to write values, and then
reads data at the starting address readAddress using the number of values to read readCount.

This function performs a combination of one write operation and one read operation on groups of
holding registers in a single Modbus transaction. The write operation is always performed before the
read. The range of addresses to read must be contiguous, and the range of addresses to write must
be contiguous, but write and read addresses are specified independently and need not overlap.

moddata = writeRead(m,writeAddress,values,writePrecision,readAddress,
readCount,readPrecision) adds optional precisions for the write and read operations. The
writePrecision and readPrecision arguments specify the data format of the register being
written to and read from on the Modbus server.

moddata = writeRead(___ ,serverId) additionally uses the serverId as the address of the
server to send the command to.

Examples

Write and Read Holding Registers

The writeRead function is used to perform a combination of one write operation and one read
operation on groups of holding registers in a single Modbus transaction. The write operation is
always performed before the read. The range of addresses to read must be contiguous, and the range
of addresses to write must be contiguous, but each is specified independently and may or may not
overlap.

Write 2 holding registers starting at address 300, and read 4 holding registers starting at address
17250.

moddata = writeRead(m,300,[500 1000],17250,4)

moddata =

 35647 48923 50873 60892

 writeRead

19-251

If the operation is successful, it returns an array of doubles, each representing a 16-bit register value,
where the first value in the vector corresponds to the register value at the address specified in
readAddress.

You can optionally create variables for the values to be written, instead of including the array of
values in the function syntax. The example could be written this way, using a variable for the values:

values = [500 1000];
moddata = writeRead(m,300,values,17250,4)

moddata =

 35647 58923 50873 60892

Write and Read Holding Registers, and Specify Server ID

Use the serverId argument to specify the address of the server to send the command to.

Write 3 holding registers starting at address 400, and read 4 holding registers starting at address
52008 from server ID 6.

moddata = writeRead(m,400,[1024 512 680],52008,4,6)

moddata =

 38629 24735 29456 39470

Write and Read Holding Registers, and Specify Precisions

Use the writePrecision and readPrecision arguments to specify the data format of the register
being read from or written to on the Modbus server.

Write 3 holding registers starting at address 500, and read 6 holding registers starting at address
52008 from server ID 6. Specify a writePrecision of 'uint64' and a readPrecision of
'uint32'.

moddata = writeRead(m,500,[1024 512 680],'uint64',52008,6,'uint32',6)

moddata =

 38629 24735 29456 39470 33434 29484

Input Arguments
writeAddress — Starting address of the registers to write
double

Starting address to write to, specified as a double. writeAddress must be the first argument after
the object name. This example writes 2 holding registers starting at address 501 and reads 4 holding
registers starting at address 11250. The writeAddress is 501.
Example: writeRead(m,501,[1024 512],11250,4)
Data Types: double

19 Functions

19-252

values — Array of values to write
double | array of doubles

Array of values to write, specified as a double or array of doubles. Values must be the second
argument after the object name. Each value must be in the range 0–65535. This example writes 2
holding registers starting at address 501 and reads 4 holding registers starting at address 11250. The
values are [1024 512].
Example: writeRead(m,501,[1024 512],11250,4)
Data Types: double

readAddress — Starting address of the holding registers to read
double

Starting address of the holding registers to read, specified as a double. readAddress must be the
third argument after the object name. This example writes 2 holding registers starting at address 501
and reads 4 holding registers starting at address 11250. The readAddress is 11250.
Example: writeRead(m,501,[1024 512],11250,4)
Data Types: double

readCount — Number of holding registers to read
double

Number of holding registers to read, specified as a double. readCount must be the fourth argument
after the object name. This example writes 2 holding registers starting at address 501 and reads 4
holding registers starting at address 11250. The readCount is 4.
Example: writeRead(m,501,[1024 512],11250,4)
Data Types: double

serverId — Address of the server to send the command to
double

Address of the server to send the command to, specified as a double. Server ID must be specified
after the object name, write address, values, read address, and read count. If you do not specify a
serverId, the default of 1 is used. Valid values are 0–247, with 0 being the broadcast address. This
example writes 3 holding registers starting at address 400 and reads 4 holding registers starting at
address 52008 from server ID 6.
Example: writeRead(m,400,[1024 512 680],52008,4,6)
Data Types: double

writePrecision — Data format of the holding register being written to on the Modbus
server
character vector | string

Data format of the holding register being written to on the Modbus server, specified as a character
vector or string. writePrecision must be specified after the write address and values. Valid values
are 'uint16', 'int16', 'uint32', 'int32', 'uint64', 'int64', 'single', and 'double'.
This argument is optional, and the default is 'uint16'.

Note that writePrecision does not refer to the return type, which is always 'double'. It specifies
how to interpret the register data.

 writeRead

19-253

This example writes 3 holding registers starting at address 400 and reads 4 holding registers starting
at address 52008 from server ID 6. It also specifies a writePrecision of 'uint64'.
Example: writeRead(m,400,[1024 512 680],'uint64',52008,4,'uint32',6)
Data Types: char

readPrecision — Data format of the holding register being read from on the Modbus
server
character vector | string

Data format of the holding register being read from on the Modbus server, specified as a character
vector or string. readPrecision must be specified after the read address, and read count. Valid
values are 'uint16', 'int16', 'uint32', 'int32', 'uint64', 'int64', 'single', and
'double'. This argument is optional, and the default is 'uint16'.

Note that readPrecision does not refer to the return type, which is always 'double'. It specifies
how to interpret the register data.

This example writes 3 holding registers starting at address 400 and reads 4 holding registers starting
at address 52008 from server ID 6. It also specifies a readPrecision of 'uint32'.
Example: writeRead(m,400,[1024 512 680],'uint64',52008,4,'uint32',6)
Data Types: char

Output Arguments
moddata — Value of read data
double

Read data values, returned as a double or array of doubles.

Version History
Introduced in R2017a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
modbus | read | write | maskWrite

Topics
“Create a Modbus Connection” on page 18-3
“Configure Properties for Modbus Communication” on page 18-5
“Write and Read Multiple Holding Registers” on page 18-16

19 Functions

19-254

writeValue
Package: opc.ua

Write values to nodes on OPC UA server

Syntax
writeValue(UaClient,NodeList,Values)
writeValue(NodeList,Values)

Description
writeValue(UaClient,NodeList,Values) writes content of Values, to the nodes identified by
NodeList. You can browse for node objects using browseNamespace. You can also create nodes
using opcuanode.

If NodeList is a single node, then Values is the value written to the node. If NodeList is an array
of nodes, Values must be a cell array the same size as NodeList, and each element of the cell array
is written to the corresponding element of NodeList.

The data type of the value you are writing does not need to match the node ServerDataType
property. All values are automatically converted before writing to the server. However, a warning or
error is generated if the data type conversion fails. For DateTime data types, you can pass a MATLAB
datetime or a number; any numeric value can be interpreted as a MATLAB datetime.

To confirm what size arrays can be written to a node, check the ServerValueRank and
ServerArrayDimensions properties of the node:

• A ServerValueRank value of -3 indicates a scalar or 1-dimensional array, -2 indicates any size
array, -1 indicates a scalar, 0 indicates an array with 1 or more dimensions, and a positive value
indicates the number of dimensions.

• If the number of dimensions is fixed, ServerArrayDimensions is an array specifying the
maximum possible length of each dimension. A value of 0 for a dimension length indicates no
limit.

For example, if a node supports 2-dimensional arrays of a maximum size of 64-by-32,
ServerValueRank has a value of 2 and ServerArrayDimensions [64, 32].

writeValue(NodeList,Values) writes content of Values, to the nodes identified by NodeList.
All nodes must be of the same connected client.

Examples

Write a Value to a Node

Write a new value to the Static Double node on a local server.

uaClient = opcua('localhost', 53530);
connect(uaClient);

 writeValue

19-255

staticNode = findNodeByName(uaClient.Namespace, 'StaticData', '-once');
scalarNode = findNodeByName(staticNode, 'StaticVariables', '-once');
dblNode = findNodeByName(staticNode, 'Double');
writeValue(uaClient, dblNode, 3.14159)
[newVal,newTS] = readValue(uaClient, dblNode)

Write multiple values to a single node.

arrayNode = opcuanode(6, 'DoubleArray', uaClient);
writeValue(arrayNode, [3.14, 1.212]);

Write scalar values to multiple nodes.

multiNodes = opcuanode(6, {'Double','Float'}, uaClient);
writeValue(multiNodes, {34,12});

Input Arguments
UaClient — OPC UA client
OPC UA client object

OPC UA client specified as an OPC UA client object. The client must be connected.

NodeList — List of nodes
array of node objects

List of nodes specified as an array of node objects or a single node. For information on node object
functions and properties, type:

help opc.ua.Node

Values — values
cell array | scalar | array

Values specified as a scalar, array, or cell array values. If writing to a single node, use a scalar or
array of values. If writing to an array of nodes, use a cell array of values; each element of the call
array is written to the corresponding node.

Version History
Introduced in R2015b

See Also
Functions
getNamespace | browseNamespace | readValue

19 Functions

19-256

Blocks

20

OPC Configuration
Configure OPC DA clients for model, pseudo real-time control, and behavior for OPC errors and
events

Libraries:
Industrial Communication Toolbox

Description
The OPC Configuration block defines the OPC Data Access clients to be used in a model, configures
pseudo real-time behavior for the model, and defines behavior for OPC errors and events.

The block has no input ports. One optional output port displays model latency.

You cannot place more than one OPC Configuration block in a model. If you attempt to do so, an error
message appears, and the second OPC Configuration block is disabled.

Ports
Output

Pseudo real-time latency — Wait time for each simulation step
vector of double

Outputs the model latency as the time spent waiting at each simulation step to achieve pseudo real-
time behavior.
Data Types: double

Parameters
OPC Configuration

Configure OPC Clients — Define and configure OPC DA clients for use throughout the model

Click to open the OPC Client Manager dialog for the model. Each model has a list of clients
associated with it. These clients are used during the simulation to read or write data to an OPC DA
server. For more information, see “Use the OPC Client Manager” on page 10-11.

Error Control

These parameters define actions when OPC-specific errors and events are encountered. The available
actions are to produce an error and stop the simulation, produce a warning and continue the
simulation, or ignore the error or event.

Items not available on server — Behavior on missing items
Error (default) | Warn | None

20 Blocks

20-2

Defines the behavior for items that are specified in a Read or Write block but do not exist on the
server when the simulation starts.

Read/write errors — Behavior on read or write errors
Warn (default) | Error | None

Defines the behavior when a read or write operation fails.

Server unavailable — Behavior on server shutdown
Error (default) | Warn | None

Defines the behavior when the client cannot connect to the OPC DA server, or when the server sends
a shutdown event to the client.

Pseudo real-time violation — Behavior on real-time violation
Warn (default) | Error | None

Defines the behavior when the simulation runs slower than real time. See the Pseudo real-time
simulation options for more information.

Pseudo real-time simulation

Enable pseudo real-time simulation — Control simulation speed
on (default) | off

This parameter allows you to configure options for running the simulation in pseudo real time. When
checked (on), the model execution time matches the system clock as closely as possible by slowing
down the simulation appropriately. Note that the real-time control settings do not guarantee real-time
behavior.

If the model runs slower than real time, a pseudo real-time latency violation error occurs. You can
control how Simulink responds to a pseudo real-time latency violation using the settings in the Error
control pane.

Speedup — Simulation speedup factor
1 (default) | integer value

The Speedup setting determines how many times faster than the system clock the simulation runs.
For example, a setting of 2 means that a 10-second simulation will take 5 seconds to complete. The
Speedup parameter must be a literal integer; you cannot use a MATLAB or Simulink model
workspace variable to define the speedup factor.

Output Ports

Show pseudo real-time latency port — Add latency output port
off (default) | on

Check this parameter (on) to add an output port to the block for the model pseudo real-time latency.

Version History
Introduced before R2006a

 OPC Configuration

20-3

See Also
Blocks
OPC Read | OPC Write

20 Blocks

20-4

OPC Quality Parts
Convert OPC DA quality ID into vendor, major, minor, and limit status

Libraries:
Industrial Communication Toolbox

Description
The OPC Quality Parts block converts an OPC Data Access quality ID vector into four parts:

• Vendor status
• Major quality
• Quality substatus
• Limit status

The Quality output port of an OPC Read block generates quality IDs. For more information on quality
parts, see “OPC Quality” on page A-2.

Ports
Input

QID — Quality ID
OPC quality ID integer

OPC quality ID integer, typically connected to the Quality output port of an OPC Read block.
Data Types: uint16

Output

Vendor — Vendor quality information
integer 0-255

Quality ID information specific to the vendor.
Data Types: uint16

Major — Major quality value
0 | 1 | 3

Major quality value, indicating bad (0), uncertain (1), or good (3) quality. For more information, see
“Major Quality” on page A-3.
Data Types: uint16

Sub — Quality substatus value
integer 0-7

 OPC Quality Parts

20-5

Each major quality status has an additional substatus that describes the quality of the value in more
detail. The interpretation of the substatus value depends on whether its major quality is good,
uncertain, or bad. See “Quality Substatus” on page A-4.
Data Types: uint16

Limit — Limit status
0 | 1 | 2 | 3

The limit status of the quality value, indicating that the value is not limited (0), fixed at a lower limit
(1), fixed at an upper limit (2), or constant (3). See “Limit Status” on page A-6.
Data Types: uint16

Version History
Introduced before R2006a

See Also
Blocks
OPC Read

Topics
“OPC Quality” on page A-2

20 Blocks

20-6

OPC Read
Read data from OPC DA server

Libraries:
Industrial Communication Toolbox

Description
The OPC Read block reads data from one or more items on an OPC Data Access server. The read
operation takes place synchronously (from the cache or from the device) or asynchronously (from the
device).

The block outputs the values (V) of the requested items in the first output, and optionally outputs the
quality IDs (Q) and the time stamps (T) associated with each data value in separate outputs. The time
stamp can be output as a serial date number (real-world time), or as the number of seconds from the
start of the simulation (simulation time).

The V,Q,T triple available at the output ports is the last known data for each of the items read by the
block. Use the time stamp output to determine when a sample last changed.

Note You must have an OPC Configuration block in your model to use the OPC Read block. You
cannot open the OPC Read parameters dialog without first including an OPC Configuration block in
the model.

Ports
Output

V — Values of requested items
item value data

Values of the requested items, returned as a vector of type specified by the Value port data type
parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Q — Quality of requested items
vector of uint16

Quality of requested items, returned as a vector of uint16. For details on the quality format, see
“OPC Quality” on page A-2. This port is optional, depending on the setting of the Show quality port
parameter.
Data Types: uint16

T — Time stamps of requested items
seconds | date number

 OPC Read

20-7

The time stamp can be output as a vector of serial date number (real-world time), or as the number of
seconds from the start of the simulation (simulation time). This port is optional, depending on the
setting of the Show timestamp port as parameter.
Data Types: double

Parameters
Import from Workspace — Import block settings from dagroup object in workspace

The import dialog allows you to import settings for the OPC Read block from a dagroup object in the
MATLAB base workspace. The client, item IDs, and sample time are updated based on the properties
of the imported group. The Value port data type is also set if all items in the group have the same
DataType property.

Client — Define OPC client for block
list choice

Defines the OPC DA client associated with this block. You can add clients to the list using Configure
OPC Clients. For more information, see “Use the OPC Client Manager” on page 10-11.

Item IDs — List of OPC server items
list view

Shows the items to be read from the specified server. You can add items to the list using Add Items,
or delete items using Delete. You can change the order of the items in the list using Move Up or
Move Down. The order of the items determines the order of their values in the block outputs.

Read mode — Set synchronous reading
Synchronous (cache) (default) | Synchronous (device) | Asynchronous

Defines the read mode for this block. Available options are Asynchronous, Synchronous (cache),
or Synchronous (device). Synchronous reads are generally more reliable, but have slightly more
overhead than asynchronous reads.

Sample time — Sample time for block reads
0.5 (default) | numeric

Defines the sample time for the block, in seconds. For synchronous reads, data is read from the
server at the specified sample time. For asynchronous reads, the sample time setting defines the
update rate for data change events.

Value port data type — Data type for value
double (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | logical

Defines the data type for the value output port. The OPC DA server is responsible for converting all
data to the required type. See DataType.

Note For items with a CanonicalDataType of logical on the server, you can set the OPC Read block
to output a numeric value type:

• When the item value is true, the OPC Read block value output is -1 for signed data types, or the
maximum value for unsigned integers.

20 Blocks

20-8

• When the item value is false, the block value output is 0.

Show quality port — Add quality output to block
on (default) | off

When checked (on), the quality IDs of all the items are output in the second port as a vector of
unsigned 16-bit integers (uint16). Use the OPC Quality Parts block to separate the quality ID into
component parts.

Show timestamp port as — Set time stamp basis
on (default) | off

When checked (on), the timestamps for each of the items are output in the last port as a vector of
doubles. You can choose whether to output the timestamps as Seconds since start (i.e., simulation
time) or as Serial date numbers (i.e., real-world time).

Version History
Introduced before R2006a

See Also
Blocks
OPC Configuration | OPC Quality Parts | OPC Write

Functions
genslread

Topics
“OPC Quality” on page A-2

 OPC Read

20-9

OPC Write
Write data to OPC DA server

Libraries:
Industrial Communication Toolbox

Description
The OPC Write block writes data to one or more items on an OPC Data Access server. You can choose
the write operation to take place synchronously or asynchronously.

Each element of the input vector is written to the corresponding item in the item ID list defined for
the OPC Write block.

Note You must have an OPC Configuration block in your model to use the OPC Write block. You
cannot open the OPC Write dialog without first including an OPC Configuration block in the model.

Ports
Input

Value — Vector of item values
vector

Values to be written to OPC items. Each element of the input vector is written to a separate item on
the OPC DA server.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean

Parameters
Import from Workspace — Import block settings from dagroup object in workspace

The import dialog allows you to import settings for the OPC Write block from a dagroup object in the
MATLAB base workspace. The client, item IDs, and sample time are updated based on the properties
of the imported group.

Client — Define OPC client for block
list choice

Defines the OPC DA client associated with this block. You can add clients to the list using Configure
OPC Clients. For more information, see “Use the OPC Client Manager” on page 10-11.

Item IDs — List of OPC server items
list view

20 Blocks

20-10

Shows the items to be written to on the specified server. You can add items to the list using Add
Items, or delete items using Delete. You can change the order of the items in the list using Move Up
or Move Down. Each element of the vector at input port is written in order to the corresponding item
in the list.

Write mode — Set synchronous writing
Synchronous (default) | Asynchronous

Defines the write mode for this block, as Synchronous or Asynchronous. Synchronous writes are
generally more reliable than asynchronous, but have slightly more overhead.

Sample time — Block sample time
0 (default) | numeric

Defines the sample time for the block. Data is written to the server at the specified sample time. You
can specify 0 for continuous mode, or -1 to inherit the sample time of the block connected to the
input of the OPC Write block.

Version History
Introduced before R2006a

See Also
Blocks
OPC Configuration | OPC Read

Functions
genslwrite

 OPC Write

20-11

Industrial Communication Toolbox
Examples

• “Install a Simulation Server for OPC Examples” on page 21-2
• “Acquire Data from an OPC Data Access Server” on page 21-3
• “Locate and Browse OPC Data Access Servers” on page 21-7
• “Create and Configure OPC Objects” on page 21-10
• “Manage OPC Data Access Objects” on page 21-14
• “Read and Write Data to an OPC Data Access Server” on page 21-17
• “Log Data from an OPC Data Access Server” on page 21-21
• “View the OPC Event Log” on page 21-24
• “Monitor Logging Progress with Callbacks” on page 21-26
• “Update MATLAB Plots While Logging OPC Data” on page 21-28
• “Locate and Browse OPC Historical Data Access Servers” on page 21-30
• “Acquire Data from an OPC Historical Data Access Server” on page 21-33
• “Visualize and Preprocess OPC HDA Data” on page 21-37
• “Browse OPC UA Server Namespace” on page 21-44
• “Read and Write Current OPC UA Server Data” on page 21-51
• “Read Historical OPC UA Server Data” on page 21-56
• “Visualize and Preprocess OPC UA Data” on page 21-61
• “Read and Write to an OPC Data Access Server from Simulink” on page 21-70
• “Use OPC Data to Test a Binary Distillation Column Plant Model” on page 21-72
• “Get Started Accessing Data from a PI Server” on page 21-74
• “Read Data from a PI Server” on page 21-77
• “Process PI Data Using Common MATLAB Operations” on page 21-81
• “Get Started with MQTT” on page 21-88
• “Get Data from Subscribed Topics in an MQTT Client” on page 21-90
• “Subscribe to an MQTT Topic with a Callback Function” on page 21-93
• “Subscribe to an MQTT Wildcard Topic” on page 21-95

21

Install a Simulation Server for OPC Examples

This example shows you how to install a simulated OPC Server for use with the OPC examples.

Many of the OPC examples need to connect to a live OPC server. Matrikon™, a supplier of a variety of
OPC servers, provides a simulation server for testing purposes. This example explains how to
download and install that simulation server, and test that MATLAB® can connect to the server.

Note: You must have administrator privileges on your machine in order to install the Matrikon OPC
Simulation Server correctly.

Download the Matrikon OPC Simulation Server

Download the simulation server by visiting https://www.matrikonopc.com/ and downloading the "OPC
Simulation Server".

You may be required to register with Matrikon in order to download the OPC Simulation Server.

Install the OPC Simulation Server

Perform a default installation of the Matrikon OPC Simulation Server, including all prerequisites.

Run OPCREGISTER (64-bit users only)

If you are running 64-bit MATLAB, you should re-register the OPC Foundation Core Components that
ship with MATLAB. This enables the 64-bit MATLAB application to browse for 32-bit servers on your
machine.

opcregister('-silent')

Verify the Existence of the OPC Simulation Server

Browse for OPC servers on your local machine to verify that the OPC Simulation Server has been
successfully installed.

sInfo = opcserverinfo('localhost')

sInfo =
 Host: 'localhost'
 ServerID: {'Matrikon.OPC.Simulation.1' 'OSI.DA.1' 'OSI.HDA.1'}
 ServerDescription: {1x3 cell}
 OPCSpecification: {'DA2' 'DA2' 'DA2'}
 ObjectConstructor: {1x3 cell}

The list of ServerIDs should include Matrikon.OPC.Simulation.1

21 Industrial Communication Toolbox Examples

21-2

https://www.matrikonopc.com/

Acquire Data from an OPC Data Access Server

This example shows how to use Industrial Communication Toolbox™ to acquire data from an OPC
server.

PREREQUISITES:

• “Install a Simulation Server for OPC Examples” on page 21-2

Create OPC Data Access Object Hierarchy

Create an opcda object associated with the required server and connect to the server.

da = opcda('localhost','Matrikon.OPC.Simulation.1')
connect(da)

da =

Summary of OPC Data Access Client Object: localhost/Matrikon.OPC.Simulation.1

 Server Parameters
 Host : localhost
 ServerID : Matrikon.OPC.Simulation.1
 Status : disconnected
 Timeout : 10 seconds

 Object Parameters
 Group : 0-by-1 dagroup object
 Event Log : 0 of 1000 events

Create a group object to manage the required items.

grp = addgroup(da,'DemoGroup')

grp =

Summary of OPC Data Access Group Object: DemoGroup

 Object Parameters
 Group Type : private
 Item : 0-by-1 daitem object
 Parent : localhost/Matrikon.OPC.Simulation.1
 Update Rate : 0.5
 Deadband : 0%

 Object Status
 Active : on
 Subscription : on
 Logging : off

 Logging Parameters
 Records : 120
 Duration : at least 60 seconds
 Logging to : memory

 Acquire Data from an OPC Data Access Server

21-3

 Status : Waiting for START.
 0 records available for GETDATA/PEEKDATA

Add the Real8 item from Saw-Toothed Waves and the Real8 and UInt2 items from Triangle
Waves to the group.

itmIDs = {'Saw-toothed Waves.Real8', ...
 'Triangle Waves.Real8', ...
 'Triangle Waves.UInt2'};
itm = additem(grp,itmIDs)

itm =

 OPC Item Object Array:

 Index: Active: ItemID: Value: Quality: TimeStamp:
 1 on ...hed Waves.Real8 Bad: Ou...
 2 on ...gle Waves.Real8 Bad: Ou...
 3 on ...gle Waves.UInt2 Bad: Ou...

Configure OPC Object Properties

Configure the group to log 60 seconds of data at 0.2 second intervals.

logDuration = 60;
logRate = 0.2;
numRecords = ceil(logDuration./logRate)
grp.UpdateRate = logRate;
grp.RecordsToAcquire = numRecords;

numRecords =

 300

Acquire OPC Server Data

Start the acquisition task, and wait for the task to complete before continuing execution of any
MATLAB™ code.

start(grp)
wait(grp)

Note that while waiting for a logging task to complete, MATLAB continues to process callbacks from
OPC objects (and other objects that include callback functionality).

Retrieve the logged data into separate arrays for the time stamps, quality, and values.

[logIDs,logVal,logQual,logTime,logEvtTime] = getdata(grp,'double');

Examine the workspace for the sizes of the data.

whos log*

 Name Size Bytes Class Attributes

21 Industrial Communication Toolbox Examples

21-4

 logDuration 1x1 8 double
 logEvtTime 300x1 2400 double
 logIDs 1x3 438 cell
 logQual 300x3 126004 cell
 logRate 1x1 8 double
 logTime 300x3 7200 double
 logVal 300x3 7200 double

Plot the Data

You can now plot this data all on one set of axes.

logTime = datetime(logTime,'ConvertFrom','datenum');
plot(logTime,logVal);
axis tight
lgd = legend(logIDs);
lgd.AutoUpdate = 'off';

The value data does not provide the full picture. You should always examine the quality of the data to
determine the validity of the value array.

Annotate the plot with markers where the quality is not Good.

hold on
isBadQual = strncmp(logQual,'Bad',3);
isRepeatQual = strncmp(logQual,'Repeat',6);
for k = 1:size(logQual,2)

 Acquire Data from an OPC Data Access Server

21-5

 badInd = isBadQual(:,k);
 plot(logTime(badInd,k),logVal(badInd,k),'ro', ...
 'MarkerFaceColor','r','MarkerEdgeColor','k')
 repInd = isRepeatQual(:,k);
 plot(logTime(repInd, k),logVal(repInd,k),'ro', ...
 'MarkerFaceColor',[0.8 0.5 0],'MarkerEdgeColor','k')
end
hold off

Bad quality is marked in red, and Repeat quality is marked in orange.

Clean Up

Disconnect and delete the client object from the OPC engine.

disconnect(da)
delete(da)

21 Industrial Communication Toolbox Examples

21-6

Locate and Browse OPC Data Access Servers

This example shows you how to browse the network for OPC servers, and query the server name
space for server items and their properties.

PREREQUISITES:

• “Install a Simulation Server for OPC Examples” on page 21-2

Step 1: Browse the Network for OPC Servers

You use the opcserverinfo function to query a host on the network for available OPC Data Access
servers. This example uses the local host.

hostInfo = opcserverinfo('localhost')

hostInfo =

 Host: 'localhost'
 ServerID: {'Matrikon.OPC.Simulation.1'}
 ServerDescription: {'MatrikonOPC Server for Simulation and Testing'}
 OPCSpecification: {'DA2'}
 ObjectConstructor: {'opcda('localhost', 'Matrikon.OPC.Simulation.1')'}

The returned structure provides information about each server:

hostInfo.ServerDescription'

ans =

 'MatrikonOPC Server for Simulation and Testing'

and about the Server ID you use to create a client object.

allID = hostInfo.ServerID'

allID =

 'Matrikon.OPC.Simulation.1'

Step 2: Construct a Client Object and Connect to the Server

Use the host name and server ID found in the previous step to construct a client object.

da = opcda('localhost','Matrikon.OPC.Simulation.1')

da =

Summary of OPC Data Access Client Object: localhost/Matrikon.OPC.Simulation.1

 Locate and Browse OPC Data Access Servers

21-7

 Server Parameters
 Host : localhost
 ServerID : Matrikon.OPC.Simulation.1
 Status : disconnected
 Timeout : 10 seconds

 Object Parameters
 Group : 0-by-1 dagroup object
 Event Log : 0 of 1000 events

Connect the client to the server.

connect(da);

Step 3: Retrieve the Server Name Space

Retrieve the name space of the server.

ns = getnamespace(da)

ns =

4×1 struct array with fields:

 Name
 FullyQualifiedID
 NodeType
 Nodes

Each element of the structure is a node in the server name space.

ns(1)

ans =

 Name: 'Simulation Items'
 FullyQualifiedID: 'Simulation Items¥'
 NodeType: 'branch'
 Nodes: [8×1 struct]

Step 4: Find Items in the Name Space

Use the serveritems function to find all items in the name space containing the string Real.

realItems = serveritems(ns,'*Real*')

realItems =

 'Bucket Brigade.ArrayOfReal8'
 'Bucket Brigade.Real4'
 'Bucket Brigade.Real8'
 'Random.ArrayOfReal8'
 'Random.Real4'

21 Industrial Communication Toolbox Examples

21-8

 'Random.Real8'
 'Read Error.ArrayOfReal8'
 'Read Error.Real4'
 'Read Error.Real8'
 'Saw-toothed Waves.Real4'
 'Saw-toothed Waves.Real8'
 'Square Waves.Real4'
 'Square Waves.Real8'
 'Triangle Waves.Real4'
 'Triangle Waves.Real8'
 'Write Error.ArrayOfReal8'
 'Write Error.Real4'
 'Write Error.Real8'
 'Write Only.ArrayOfReal8'
 'Write Only.Real4'
 'Write Only.Real8'

Step 5: Query Server Item Properties

Examine the Canonical Data Type (PropID = 1) and the Item Access Rights (PropID = 5) of the
second item found.

canDT = serveritemprops(da,realItems{2},1)
accessRights = serveritemprops(da,realItems{2},5)

canDT =

 PropID: 1
 PropDescription: 'Item Canonical DataType'
 PropValue: 'single'
 PropItemID: ''

accessRights =

 PropID: 5
 PropDescription: 'Item Access Rights'
 PropValue: 'read/write'
 PropItemID: ''

Step 6: Clean Up OPC Objects

Disconnect the client from the server and remove OPC objects from memory when you no longer
need them. Deleting the client object also deletes the group and item objects.

disconnect(da)
delete(da)

 Locate and Browse OPC Data Access Servers

21-9

Create and Configure OPC Objects

This example shows you how to create and configure objects in the workspace to access an OPC
server.

PREREQUISITES:

• “Install a Simulation Server for OPC Examples” on page 21-2

Create Client Objects

Create a client using the opcda function. You need the host name and the server ID for the OPC
server associated with this client.

da = opcda('localhost','Matrikon.OPC.Simulation.1');
connect(da);

Add Groups to the Client

Use the addgroup function to add groups to the client object. The toolbox automatically assigns a
name to the group, if you do not specify one.

grp1 = addgroup(da);

Group objects are used to manage collections of daitem objects.

To assign your own name to a group, the name must be unique for all the groups in a client. Pass the
name as an additional argument to addgroup.

grp2 = addgroup(da,'MyGroup');

Type the object name to view a summary of the group object.

grp1

grp1 =

Summary of OPC Data Access Group Object: Group0

 Object Parameters
 Group Type : private
 Item : 0-by-1 daitem object
 Parent : localhost/Matrikon.OPC.Simulation.1
 Update Rate : 0.5
 Deadband : 0%

 Object Status
 Active : on
 Subscription : on
 Logging : off

 Logging Parameters
 Records : 120
 Duration : at least 60 seconds
 Logging to : memory

21 Industrial Communication Toolbox Examples

21-10

 Status : Waiting for START.
 0 records available for GETDATA/PEEKDATA

Add Item Objects to the Group

Add the item named Random.Real8 to the group.

itm1 = additem(grp1,'Random.Real8');

If you want the value stored in MATLAB® to have a specific data type, specify it as the third
argument.

itm2 = additem(grp1,'Random.UInt2','double');

To view a summary of the object, type the name of the object.

itm1

itm1 =

Summary of OPC Data Access Item Object: Random.Real8

 Object Parameters
 Parent : Group0
 Access Rights : read

 Object Status
 Active : on

 Data Parameters
 Data Type : double
 Value : 0
 Quality : Bad: Out of Service
 Timestamp : 12-Apr-2016 16:19:50

Create Object Vectors

References to multiple OPC objects can be stored in object vectors.

itmVec = [itm1,itm2]

itmVec =

 OPC Item Object Array:

 Index: Active: ItemID: Value: Quality: TimeStamp:
 1 on Random.Real8 0 Bad: Ou... 16:19:50
 2 on Random.UInt2 Bad: Ou...

Displaying the object vector shows information about each object in the vector.

View and Change Object Properties

View a list of all properties supported by the object.

 Create and Configure OPC Objects

21-11

get(da)

 General Settings:
 EventLog = []
 EventLogMax = 1000
 Group = [1×2 dagroup]
 Host = localhost
 Name = localhost/Matrikon.OPC.Simulation.1
 ServerID = Matrikon.OPC.Simulation.1
 Status = connected
 Tag =
 Timeout = 10
 Type = opcda
 UserData = []

 Callback Function Settings:
 ErrorFcn = @opccallback
 ShutdownFcn = @opccallback
 TimerFcn = []
 TimerPeriod = 10

Obtain information about a specific property.

clientName = da.Name

clientName =

localhost/Matrikon.OPC.Simulation.1

Get information about a property using the propinfo function.

statusInfo = propinfo(da,'Status')

statusInfo =

 Type: 'string'
 Constraint: 'enum'
 ConstraintValue: {'disconnected' 'connected'}
 DefaultValue: 'disconnected'
 ReadOnly: 'always'

The information includes whether the property is read-only, and lists the valid values for properties
that have a predefined set of values.

Set the value of the Timeout property to 30 seconds.

da.Timeout = 30

da =

Summary of OPC Data Access Client Object: localhost/Matrikon.OPC.Simulation.1

 Server Parameters

21 Industrial Communication Toolbox Examples

21-12

 Host : localhost
 ServerID : Matrikon.OPC.Simulation.1
 Status : connected
 Timeout : 30 seconds

 Object Parameters
 Group : 2-by-1 dagroup object
 Event Log : 0 of 1000 events

Clean Up

Delete objects that you are finished using from the OPC engine.

disconnect(da)
delete(da)

Deleting the client object also deletes the group and item objects associated with that client.

 Create and Configure OPC Objects

21-13

Manage OPC Data Access Objects

This example shows you how to find, create, and remove OPC object in the workspace.

Find OPC Objects in Memory

Use the opcfind function to find OPC objects in memory.

opcfind

ans =
 []

Create OPC Objects

Create some OPC objects.

da = opcda('localhost', 'Dummy.Server.1');
grp = addgroup(da);
itm1 = additem(grp, 'Fake.Item.ID1');
itm2 = additem(grp, 'Fake.Item.ID2');

Find all valid objects.

allOPC = opcfind

allOPC =
 [1x1 opcda] [1x1 dagroup] [1x1 daitem] [1x1 daitem]

The information is returned in a cell array, because opcfind can locate different objects. Use cell
indexing to access an object.

foundGrp = allOPC{2}

foundGrp =
Summary of OPC Data Access Group Object: group1
 Object Parameters
 Group Type : private
 Item : 2-by-1 daitem object
 Parent : localhost/Dummy.Server.1
 Update Rate : 0.5
 Deadband : 0%
 Object Status
 Active : on
 Subscription : on
 Logging : off
 Logging Parameters
 Records : 120
 Duration : at least 60 seconds
 Logging to : memory
 Status : Waiting for START.
 0 records available for GETDATA/PEEKDATA

Pass property/value pairs to the opcfind function to find objects with a specific property.

allDA = opcfind('Type', 'opcda')

21 Industrial Communication Toolbox Examples

21-14

allDA =
 [1x1 opcda]

Remove Objects From Memory

To delete an OPC object from memory, use the delete function with the object. Deleting a client
object deletes all group and item objects associated with the client. Deleting a group deletes all items
in that group.

delete(grp)

Find all remaining valid objects.

allOPC = opcfind

allOPC =
 [1x1 opcda]

Using the delete function with the object will remove the object from the OPC engine but not from
the MATLAB® workspace. To remove an object from the MATLAB workspace use the clear function.

Display the current workspace.

whos

 Name Size Bytes Class Attributes

 allDA 1x1 690 cell
 allOPC 1x1 690 cell
 ans 0x0 0 double
 da 1x1 630 opcda
 foundGrp 1x1 630 dagroup
 grp 1x1 630 dagroup
 itm1 1x1 630 daitem
 itm2 1x1 630 daitem

Since an object was deleted, it is no longer valid.

grp

grp =
Invalid dagroup object.
This object should be removed from your workspace using CLEAR.

The items contained by that group are also invalid.

itm1

itm1 =
Invalid daitem object.
This object should be removed from your workspace using CLEAR.

Clear the associated variables.

clear grp itm1 itm2

Display the current workspace.

 Manage OPC Data Access Objects

21-15

whos

 Name Size Bytes Class Attributes

 allDA 1x1 690 cell
 allOPC 1x1 690 cell
 ans 0x0 0 double
 da 1x1 630 opcda
 foundGrp 1x1 630 dagroup

To remove all OPC objects from the engine and to reset the toolbox to its initial state, use the
opcreset function.

Note: Using the opcreset function will only delete objects from memory, not clear them from the
MATLAB workspace.

opcreset

Verify that no objects remain.

allOPC = opcfind

allOPC =
 []

Variables associated with deleted objects still remain.

whos

 Name Size Bytes Class Attributes

 allDA 1x1 690 cell
 allOPC 0x0 0 double
 ans 0x0 0 double
 da 1x1 630 opcda
 foundGrp 1x1 630 dagroup

You can remove those variables using the clear function.

21 Industrial Communication Toolbox Examples

21-16

Read and Write Data to an OPC Data Access Server

This example shows you how to use synchronous read and write operations to exchange data with an
OPC server.

PREREQUISITES:

• “Install a Simulation Server for OPC Examples” on page 21-2

Connect to Server and Create Objects

Create an opcda client and connect that client to the OPC server.

da = opcda('localhost','Matrikon.OPC.Simulation.1');
connect(da);

Add a group to the client, and an item to the group.

grp = addgroup(da);
itm1 = additem(grp,'Random.Real8');

Perform Synchronous Read Operations

The default read operation gets values from the server cache.

r = read(itm1)

r =

 struct with fields:

 ItemID: 'Random.Real8'
 Value: 0
 Quality: 'Bad: Out of Service'
 TimeStamp: [2016 8 30 11 55 24.4130]
 Error: ''

To force the server to read a value from the device, specify that option. This process can take a while
if the OPC server is on the network or the device takes some time to produce a value.

r = read(itm1,'device')

r =

 struct with fields:

 ItemID: 'Random.Real8'
 Value: 20.8848
 Quality: 'Good: Non-specific'
 TimeStamp: [2016 8 30 11 55 24.7220]
 Error: ''

 Read and Write Data to an OPC Data Access Server

21-17

Perform Synchronous Write Operations

Add a writable item to the group.

itm2 = additem(grp,'Bucket Brigade.Real8')

itm2 =

Summary of OPC Data Access Item Object: Bucket Brigade.Real8

 Object Parameters
 Parent : Group0
 Access Rights : read/write

 Object Status
 Active : on

 Data Parameters
 Data Type : double
 Value :
 Quality : Bad: Out of Service
 Timestamp :

Write the value 10 to the item.

write(itm2,10)

Read the value back into MATLAB.

r = read(itm2,'device')

r =

 struct with fields:

 ItemID: 'Bucket Brigade.Real8'
 Value: 10
 Quality: 'Good: Non-specific'
 TimeStamp: [2016 8 30 11 55 24.8520]
 Error: ''

Read From Multiple Items

You can read data from multiple items using the group object.

r = read(grp)

r =

 2×1 struct array with fields:

 ItemID
 Value
 Quality

21 Industrial Communication Toolbox Examples

21-18

 TimeStamp
 Error

Display individual item information by indexing.

r(1)

ans =

 struct with fields:

 ItemID: 'Random.Real8'
 Value: 20.8848
 Quality: 'Good: Non-specific'
 TimeStamp: [2016 8 30 11 55 24.7220]
 Error: ''

Extract multiple values from item.

itmIDs = {r.ItemID}
vals = [r.Value]

itmIDs =

 1×2 cell array

 'Random.Real8' 'Bucket Brigade.Real8'

vals =

 20.8848 10.0000

Write to Multiple Items

Write to multiple items, passing the values for the items in the group as a cell array.

write(grp,{1.234,5.432})

Warning: One or more items could not be written.
 Random.Real8 returned 'The item's access rights do not allow the operation.'

The previous command returns a warning, because the first item does not allow you to write data to
it. However, the second has the value 5.432 written. You can verify that be reading it.

r = read(itm2,'device')

r =

 struct with fields:

 ItemID: 'Bucket Brigade.Real8'
 Value: 5.4320

 Read and Write Data to an OPC Data Access Server

21-19

 Quality: 'Good: Non-specific'
 TimeStamp: [2016 8 30 11 55 24.9070]
 Error: ''

Clean Up

Disconnect from the server and delete the client object.

disconnect(da)
delete(da)

Deleting the client object automatically deletes the group and item objects.

21 Industrial Communication Toolbox Examples

21-20

Log Data from an OPC Data Access Server

This example shows you how to configure and execute a logging session, and retrieve data from that
logging session.

PREREQUISITES:

• “Install a Simulation Server for OPC Examples” on page 21-2

Create the OPC Object Hierarchy

Create a hierarchy of objects.

da = opcda('localhost','Matrikon.OPC.Simulation.1');
connect(da);
grp = addgroup(da,'CallbackTest');
additem(grp,'Random.Real8');
additem(grp,'Random.UInt2');
additem(grp,'Random.Real4');

Configure the Logging Duration

Set the group's UpdateRate value to 0.2 seconds, and the RecordsToAcquire property to 40.

grp.UpdateRate = 0.2;
grp.RecordsToAcquire = 40;

Configure the Logging Destination

Configure the group to log data to disk and memory. Use a file in a temporary folder.

logFileName = fullfile(tempdir,'LoggingExample.olf');
grp.LoggingMode = 'disk&memory';
grp.LogFileName = logFileName;
grp.LogToDiskMode = 'overwrite';

The disk file name is LoggingExample.olf. If the file name exists, the toolbox engine overwrites
the file.

Start the Logging Task

Start the logging task on the group object. Wait two seconds and show the last acquired value.

start(grp)
pause(2)
sPeek = peekdata(grp,1)

sPeek =

 LocalEventTime: [2016 4 12 13 49 24.9080]
 Items: [3×1 struct]

Display the item ID and values

disp({sPeek.Items.ItemID;sPeek.Items.Value});

 Log Data from an OPC Data Access Server

21-21

 'Random.Real8' 'Random.UInt2' 'Random.Real4'
 [8.5714e+03] [9961] [1.9025e+04]

Wait for the object to complete logging before continuing with the example.

wait(grp)

Retrieve the Data

Retrieve the first 20 acquired records into a structure.

sFirst = getdata(grp,20);

The getdata function removes the records from the toolbox engine. Examine the available records
using the RecordsAvailable property of the group.

recAvail = grp.RecordsAvailable

recAvail =

 20

Retrieve the balance of the records into separate arrays, converting all values to double-precision
floating point numbers.

[exItmId,exVal,exQual,exTStamp,exEvtTime] = getdata(grp, ...
 recAvail,'double');

Examine the contents of the workspace.

whos ex*

 Name Size Bytes Class Attributes

 exEvtTime 20x1 160 double
 exItmId 1x3 408 cell
 exQual 20x3 8880 cell
 exTStamp 20x3 480 double
 exVal 20x3 480 double

Retrieve data from disk for a specific item, using the 'itemids' filter.

sReal8Disk = opcread(logFileName,'itemids','Random.Real8')

sReal8Disk =

40×1 struct array with fields:

 LocalEventTime
 Items

Examine the second record.

sReal8Disk(2).Items

21 Industrial Communication Toolbox Examples

21-22

ans =

 ItemID: 'Random.Real8'
 Value: 1.4955e+04
 Quality: 'Good: Non-specific'
 TimeStamp: [2016 4 12 13 49 24.3890]

Clean Up

Disconnect and delete OPC objects from the toolbox engine.

disconnect(da)
delete(da)
delete(logFileName)

Deleting the client object also deletes the group and item objects.

 Log Data from an OPC Data Access Server

21-23

View the OPC Event Log

This example shows you how to examine the OPC event log after a logging task.

PREREQUISITES:

• “Install a Simulation Server for OPC Examples” on page 21-2

Step 1: Configure OPC Objects

Create the client, connect, and create associated objects for a logging task.

da = opcda('localhost','Matrikon.OPC.Simulation.1');
connect(da);
grp = addgroup(da,'CallbackTest');
additem(grp,'Triangle Waves.Real8');

Step 2: Configure and Execute a Logging Task

Configure the group to log only 10 records, then start the task and wait for it to complete.

grp.RecordsToAcquire = 10;
start(grp)
wait(grp)

Step 3: View the Event Log

Access the EventLog property of the client object.

events = da.EventLog

events =

 1×2 struct array with fields:

 Type
 Data

The execution of the group logging task generated two events: start and stop. The value of the
EventLog property is a 1-by-2 array of event structures.

List the events that are recorded in the EventLog property, by examining the contents of the Type
field.

{events.Type}

ans =

 1×2 cell array

 {'Start'} {'Stop'}

Access the Data field to get information about the stop event.

21 Industrial Communication Toolbox Examples

21-24

stopdata = events(2).Data

stopdata =

 struct with fields:

 LocalEventTime: [2020 10 19 11 38 3.8710]
 GroupName: 'CallbackTest'
 RecordsAcquired: 10

Calculate the time between the stop event and the start event.

waitDuration = datetime(events(2).Data.LocalEventTime)...
 - datetime(events(1).Data.LocalEventTime);
waitSeconds = seconds(waitDuration)

waitSeconds =

 5.3740

Note: waitSeconds is not necessarily the time between the first and last sample in the logged data
set. The LocalEventTime property is the time that MATLAB® processed the event received from
the server; there can be some delay between the server sending the notification and MATLAB
processing it. You should consult the TimeStamp property of the logged data for accurate time
information related to the data.

Step 4: Clean Up

Disconnect the client from the server and remove OPC objects from memory when you no longer
need them. Deleting the client object also deletes the group and item objects.

disconnect(da)
delete(da)

 View the OPC Event Log

21-25

Monitor Logging Progress with Callbacks

This example shows you how to use callbacks to monitor an OPC Data Access logging task.

Use callbacks to log or report events in a logging task, to update graphical user interfaces to show
status of logging, or to graphically display logged data during the logging task.

PREREQUISITES:

• “Install a Simulation Server for OPC Examples” on page 21-2

Step 1: Configure OPC Objects

Create the client, connect, and create associated objects for a logging task.

da = opcda('localhost','Matrikon.OPC.Simulation.1');
connect(da);
grp = addgroup(da,'CallbackTest');
additem(grp,{'Random.Real8','Saw-toothed Waves.UInt2'});

Step 2: Configure the Logging Task Properties

Set the group to acquire 20 records at 0.5 second intervals.

grp.RecordsToAcquire = 20;
grp.UpdateRate = 0.5;
disp(grp)

Summary of OPC Data Access Group Object: CallbackTest

 Object Parameters
 Group Type : private
 Item : 2-by-1 daitem object
 Parent : localhost/Matrikon.OPC.Simulation.1
 Update Rate : 0.5
 Deadband : 0%

 Object Status
 Active : on
 Subscription : on
 Logging : off

 Logging Parameters
 Records : 20
 Duration : at least 10 seconds
 Logging to : memory
 Status : Waiting for START.
 0 records available for GETDATA/PEEKDATA

Step 3: Configure the Callbacks

Use the default callback, opccallback, to display the start event (StartFcn property), the stop event
(StopFcn property), and when each consecutive 5 records have been acquired
(RecordsAcquiredFcn and RecordsAcquiredFcnCount properties).

21 Industrial Communication Toolbox Examples

21-26

grp.StartFcn = @opccallback;
grp.StopFcn = @opccallback;
grp.RecordsAcquiredFcn = @opccallback;
grp.RecordsAcquiredFcnCount = 5;

Step 4: Start the Logging Task

Start the logging task, and wait for it to complete.

start(grp)
wait(grp)

OPC Start event occurred at local time 14:22:38
 Group 'CallbackTest': 0 records acquired.

OPC RecordsAcquired event occurred at local time 14:22:41
 Group 'CallbackTest': 5 records acquired.

OPC RecordsAcquired event occurred at local time 14:22:44
 Group 'CallbackTest': 10 records acquired.

OPC RecordsAcquired event occurred at local time 14:22:47
 Group 'CallbackTest': 15 records acquired.

Step 5: Clean Up OPC Objects

Disconnect the client from the server and remove OPC objects from memory when you no longer
need them. Deleting the client object also deletes the group and item objects.

disconnect(da)
delete(da)

 Monitor Logging Progress with Callbacks

21-27

Update MATLAB Plots While Logging OPC Data

This example shows you how to use a custom callback to plot data acquired during an OPC logging
task.

The example makes use of the display_opcdata function, which plots recently acquired data in a
figure window.

PREREQUISITES:

• “Install a Simulation Server for OPC Examples” on page 21-2

Step 1: Create the OPC Object Hierarchy

Create a hierarchy of OPC objects.

da = opcda('localhost','Matrikon.OPC.Simulation.1');
connect(da);
grp = addgroup(da,'CallbackTest');
additem(grp,'Triangle Waves.Real8');
additem(grp,'Saw-toothed Waves.UInt2');

Step 2: Configure Property Values

Configure the logging task to acquire 200 records at 0.1 second intervals.

grp.RecordsToAcquire = 200;
grp.UpdateRate = 0.1;

Specify the display_opcdata function as the RecordsAcquiredFcn callback, which must be called
after each 10 records are acquired.

grp.RecordsAcquiredFcnCount = 10;
grp.RecordsAcquiredFcn = @display_opcdata;

Step 3: Acquire Data

Start the group object. After every 10 records are acquired, the object executes the
display_opcdata callback function. This callback function plots the most recently acquired records
logged to the memory buffer.

start(grp)
wait(grp)

21 Industrial Communication Toolbox Examples

21-28

Step 4: Clean Up

Always remove OPC objects from memory when you no longer need them.

delete(da)

Deleting the client object disconnects the client from the server, and deletes the group and item
objects.

 Update MATLAB Plots While Logging OPC Data

21-29

Locate and Browse OPC Historical Data Access Servers

This example shows how to browse the network for OPC Historical Data Access servers, and query
the server name space for server items and their properties.

PREREQUISITES:

• “Install a Simulation Server for OPC Examples” on page 21-2

Step 1: Browse the Network for OPC HDA Servers

You use the opchdaserverinfo function to query a host on the network for available OPC Historical
Data Access servers. This example uses the local host.

hostInfo = opchdaserverinfo('localhost')

hostInfo =

OPC HDA Server Information object:
 Host: localhost
 ServerID: Matrikon.OPC.Simulation.1
 Description: MatrikonOPC Server for Simulation and Testing
 HDASpecification: HDA1

Find the server info entry with a description starting with Matrikon.

hIndex = findDescription(hostInfo,'Matrikon')
hostInfo(hIndex)

hIndex =

 1

ans =

OPC HDA Server Information object:
 Host: localhost
 ServerID: Matrikon.OPC.Simulation.1
 Description: MatrikonOPC Server for Simulation and Testing
 HDASpecification: HDA1

Step 2: Construct a Client Object and Connect to the Server

Use the ServerInfo object returned in the previous step to construct a client object.

hdaObj = opchda(hostInfo(hIndex));

You can also specify the host name and server ID directly.

hdaObj = opchda('localhost','Matrikon.OPC.Simulation.1')

hdaObj =

21 Industrial Communication Toolbox Examples

21-30

OPC HDA Client localhost/Matrikon.OPC.Simulation.1:
 Host: localhost
 ServerID: Matrikon.OPC.Simulation.1
 Timeout: 10 seconds

 Status: disconnected

 Aggregates: -- (client is disconnected)
 ItemAttributes: -- (client is disconnected)

Connect the client to the server.

connect(hdaObj);

Step 3: Retrieve the Server Name Space

Retrieve the name space of the server.

ns = getNameSpace(hdaObj)

ns =

4×1 struct array with fields:

 Name
 FullyQualifiedID
 NodeType
 Nodes

Each element of the structure is a node in the server name space.

ns(1)

ans =

 Name: 'Simulation Items'
 FullyQualifiedID: 'Simulation Items¥'
 NodeType: 'branch'
 Nodes: [8×1 struct]

Step 4: Find Items in the Name Space

Use the serveritems function to find all items in the name space containing the string Real.

realItems = serveritems(ns,'*Real*')

realItems =

 'Bucket Brigade.ArrayOfReal8'
 'Bucket Brigade.Real4'
 'Bucket Brigade.Real8'
 'Random.ArrayOfReal8'

 Locate and Browse OPC Historical Data Access Servers

21-31

 'Random.Real4'
 'Random.Real8'
 'Read Error.ArrayOfReal8'
 'Read Error.Real4'
 'Read Error.Real8'
 'Saw-toothed Waves.Real4'
 'Saw-toothed Waves.Real8'
 'Square Waves.Real4'
 'Square Waves.Real8'
 'Triangle Waves.Real4'
 'Triangle Waves.Real8'
 'Write Error.ArrayOfReal8'
 'Write Error.Real4'
 'Write Error.Real8'
 'Write Only.ArrayOfReal8'
 'Write Only.Real4'
 'Write Only.Real8'

Step 5: Query Server Item Attributes

Examine the current normal maximum value of the tenth item found.

maxVal = readItemAttributes(hdaObj,realItems{10},hdaObj.ItemAttributes.NORMAL_MAXIMUM,now,now)

Warning: Saw-toothed Waves.Real4: No history available for attribute.

maxVal =

 ItemID: 'Saw-toothed Waves.Real4'
 AttributeID: 11
 Timestamp: 7.3643e+05
 Value: 100

The warning indicates that the item has not yet been stored in the historian database, but the
preconfigured item attributes are being returned.

Step 6: Clean Up OPC Objects

Disconnect the client from the server and remove OPC objects from memory when you no longer
need them. Deleting the client object also deletes the group and item objects.

disconnect(hdaObj)
delete(hdaObj)

21 Industrial Communication Toolbox Examples

21-32

Acquire Data from an OPC Historical Data Access Server

This example shows you how to acquire data from an OPC Historical Data Access (HDA) server.

PREREQUISITES:

• “Install a Simulation Server for OPC Examples” on page 21-2

Start Historical Data Logging on the Server

NOTE: You do not normally need to execute this step on a production server.

This example uses a simulation server that only logs historical data for items that are subscribed
using an OPC Data Access client. Load the client object from a MAT file and reconnect the client.

daObjs = load('opcdemoHDAConfigure.mat');
connect(daObjs.opcdemoHDAConfigure);

Wait a while for the server to log some data.

pause(10);

Create an OPC HDA Client Object

Create an OPC HDA Client associated with the OPC HDA server.

hdaObj = opchda('localhost','matrikon.OPC.Simulation')

hdaObj =

OPC HDA Client localhost/matrikon.OPC.Simulation:
 Host: localhost
 ServerID: matrikon.OPC.Simulation
 Timeout: 10 seconds

 Status: disconnected

 Aggregates: -- (client is disconnected)
 ItemAttributes: -- (client is disconnected)

The client object manages the connection with the server, allows you to retrieve information about
the server, browse the server name space, and to read data stored on the server.

At this point, the client is not yet connected to the server. Connect the client to the server.

connect(hdaObj);

To confirm that the client is connected, display the client Status property.

hdaObj.Status

ans =

 Acquire Data from an OPC Historical Data Access Server

21-33

connected

Define Items of Interest

This example uses the Real8 items from Saw-toothed Waves and the Real8 and UInt2 items from
Random. Make a cell array of item names for ease-of-use.

itmIDs = {'Saw-toothed Waves.Real8', ...
 'Random.Real8', ...
 'Random.UInt2'};

Read Raw Data from the Server

Read the raw data values from the historical server over the past day.

data = readRaw(hdaObj,itmIDs,now-1,now)

data =

1-by-3 OPC HDA Data object:

 ItemID Value Start TimeStamp End TimeStamp Quality
 ----------------------- --------------- ----------------------- ----------------------- ----------------------
 Saw-toothed Waves.Real8 9 double values 2016-04-12 16:30:17.662 2016-04-12 16:30:25.776 1 unique quality [Raw]
 Random.Real8 9 double values 2016-04-12 16:30:17.662 2016-04-12 16:30:25.776 1 unique quality [Raw]
 Random.UInt2 9 uint16 values 2016-04-12 16:30:17.662 2016-04-12 16:30:25.776 1 unique quality [Raw]

Use the showValues method to display all values.

Note: The Matrikon server retains only the last 200 simulated values for each item.

Display the values of the first data element.

showValues(data(1))

OPC HDA Data object for item Saw-toothed Waves.Real8:

 TIMESTAMP VALUE QUALITY
 ======================= ============= ==========
 2016-04-12 16:30:17.662 3.141593 Raw (Good)
 2016-04-12 16:30:18.677 6.283185 Raw (Good)
 2016-04-12 16:30:19.692 9.424778 Raw (Good)
 2016-04-12 16:30:20.707 12.566371 Raw (Good)
 2016-04-12 16:30:21.717 15.707963 Raw (Good)
 2016-04-12 16:30:22.732 18.849556 Raw (Good)
 2016-04-12 16:30:23.747 21.991149 Raw (Good)
 2016-04-12 16:30:24.761 25.132741 Raw (Good)
 2016-04-12 16:30:25.776 28.274334 Raw (Good)

Read Processed Data from the Server

Query the Aggregates property of the HDA Client object to find out what aggregate types the server
supports.

21 Industrial Communication Toolbox Examples

21-34

hdaObj.Aggregates

ans =

OPC HDA Aggregate Types:
 Name ID Description
 ----------------- -- ---
 INTERPOLATIVE 1 Retrieve interpolated values.
 TIMEAVERAGE 4 Retrieve the time weighted average data over the resample interval.
 MINIMUMACTUALTIME 7 Retrieve the minimum value in the resample interval and the timestamp of the minimum value.
 MINIMUM 8 Retrieve the minimum value in the resample interval.
 MAXIMUMACTUALTIME 9 Retrieve the maximum value in the resample interval and the timestamp of the maximum value.
 MAXIMUM 10 Retrieve the maximum value in the resample interval.

The Matrikon server supports the time weighted average value, so we will use that aggregate type on
10 seconds of data for the last 1 minute. Note below how the Aggregates property can be used to
specify the aggregate type.

pData = readProcessed(hdaObj,itmIDs,hdaObj.Aggregates.TIMEAVERAGE,10,now-1/24/60,now)'

pData =

1-by-3 OPC HDA Data object:

 ItemID Value Start TimeStamp End TimeStamp Quality
 ----------------------- --------------- ----------------------- ----------------------- -----------------------------
 Saw-toothed Waves.Real8 6 double values 2016-04-12 16:29:26.840 2016-04-12 16:30:16.840 1 unique quality [Calculated]
 Random.Real8 6 double values 2016-04-12 16:29:26.840 2016-04-12 16:30:16.840 1 unique quality [Calculated]
 Random.UInt2 6 uint16 values 2016-04-12 16:29:26.840 2016-04-12 16:30:16.840 1 unique quality [Calculated]

Use the showValues method to display all values.

Display the values for the Random.Real8 item.

itmInd = getIndexFromID(pData,'Random.Real8');
showValues(pData(itmInd))

OPC HDA Data object for item Random.Real8:

 TIMESTAMP VALUE QUALITY
 ======================= ============= ======================
 2016-04-12 16:29:26.840 5073.986117 Calculated (Uncertain)
 2016-04-12 16:29:36.840 5073.986074 Calculated (Uncertain)
 2016-04-12 16:29:46.840 5073.986105 Calculated (Uncertain)
 2016-04-12 16:29:56.840 5073.986137 Calculated (Uncertain)
 2016-04-12 16:30:06.840 5073.986227 Calculated (Uncertain)
 2016-04-12 16:30:16.840 7322.794889 Calculated (Uncertain)

The last value has a quality of 'Uncertain' because the time interval is not a complete 10 seconds.

 Acquire Data from an OPC Historical Data Access Server

21-35

Clean Up

When you have finished with the OPC objects, delete them from the OPC engine. Although deleting
an HDA Client object automatically disconnects the object from the server, this example explicitly
shows it.

disconnect(hdaObj)
delete(hdaObj)
disconnect(daObjs.opcdemoHDAConfigure);
delete(daObjs.opcdemoHDAConfigure);

The client object is now invalid.

isvalid(hdaObj)

ans =

 0

21 Industrial Communication Toolbox Examples

21-36

Visualize and Preprocess OPC HDA Data

This example shows you how to work with OPC HDA Data objects.

You create OPC HDA Data objects when you read data from an OPC Historical Data Access (HDA)
server. OPC HDA Data objects allow you to store, visualize and manipulate historical data before
converting that data to built-in data types for further processing in MATLAB.

For more information on generating OPC HDA Data objects, see the example “Acquire Data from an
OPC Historical Data Access Server” on page 21-33.

Load Sample OPC HDA Data

Load the sample data into the workspace.

load opcdemoHDAData

Display OPC HDA Data Objects

Examine the workspace to see the loaded variables.

whos

 Name Size Bytes Class Attributes

 hdaDataSmall 1x2 356 opc.hda.Data
 hdaDataVis 1x2 9088 opc.hda.Data

Display a summary of the data contained in hdaDataVis.

hdaDataVis

hdaDataVis =

1-by-2 OPC HDA Data object:

 ItemID Value Start TimeStamp End TimeStamp Quality
 -------------- ----------------- ----------------------- ----------------------- ----------------------
 Example.Item.1 361 double values 2010-05-12 08:15:00.000 2010-05-12 09:15:00.000 1 unique quality [Raw]
 Example.Item.2 11 double values 2010-05-12 08:30:00.000 2010-05-12 09:30:00.000 2 unique qualities

The data object contains two items. The first element Example.Item.1 contains 361 values and one
unique quality, while the second has 11 values and two unique qualities.

Examine the second element in more detail using the showValues function.

showValues(hdaDataVis(2))

OPC HDA Data object for item Example.Item.2:

 TIMESTAMP VALUE QUALITY
 ======================= ============= =================
 2010-05-12 08:30:00.000 -0.500000 Raw (Good)

 Visualize and Preprocess OPC HDA Data

21-37

 2010-05-12 08:36:00.000 -0.250000 Raw (Good)
 2010-05-12 08:42:00.000 0.000000 Raw (Good)
 2010-05-12 08:48:00.000 0.250000 Raw (Good)
 2010-05-12 08:54:00.000 0.500000 Calculated (Good)
 2010-05-12 09:00:00.000 0.500000 Calculated (Good)
 2010-05-12 09:06:00.000 0.400000 Calculated (Good)
 2010-05-12 09:12:00.000 0.300000 Raw (Good)
 2010-05-12 09:18:00.000 0.200000 Raw (Good)
 2010-05-12 09:24:00.000 0.100000 Raw (Good)
 2010-05-12 09:30:00.000 0.000000 Raw (Good)

Change the Date Display Format

Get the current date display format using opc.getDateDisplayFormat.

origFormat = opc.getDateDisplayFormat;

Change the display format to standard US date format and display the value again.

opc.setDateDisplayFormat('mm/dd/yyyy HH:MM AM');
showValues(hdaDataVis(2))

OPC HDA Data object for item Example.Item.2:

 TIMESTAMP VALUE QUALITY
 =================== ============= =================
 05/12/2010 8:30 AM -0.500000 Raw (Good)
 05/12/2010 8:36 AM -0.250000 Raw (Good)
 05/12/2010 8:42 AM 0.000000 Raw (Good)
 05/12/2010 8:48 AM 0.250000 Raw (Good)
 05/12/2010 8:54 AM 0.500000 Calculated (Good)
 05/12/2010 9:00 AM 0.500000 Calculated (Good)
 05/12/2010 9:06 AM 0.400000 Calculated (Good)
 05/12/2010 9:12 AM 0.300000 Raw (Good)
 05/12/2010 9:18 AM 0.200000 Raw (Good)
 05/12/2010 9:24 AM 0.100000 Raw (Good)
 05/12/2010 9:30 AM 0.000000 Raw (Good)

Reset the display format to the default.

opc.setDateDisplayFormat('default')

ans =

yyyy-mm-dd HH:MM:SS.FFF

Reset the display format to the original value.

opc.setDateDisplayFormat(origFormat);

Visualize OPC HDA Data

Visualize OPC HDA Data using the plot and stairs functions on the data object.

21 Industrial Communication Toolbox Examples

21-38

axH1 = subplot(2,1,1);
plot(hdaDataVis);
title('Plot of hdaDataVis data');
axH2 = subplot(2,1,2);
stairs(hdaDataVis);
title('Stairstep plot of hdaDataVis data');
legend show

Resample OPC HDA Data

Examine a small data set. This data set is intentionally small to show the concept of resampling.

hdaDataSmall

hdaDataSmall =

1-by-2 OPC HDA Data object:

 ItemID Value Start TimeStamp End TimeStamp Quality
 --------------- --------------- ----------------------- ----------------------- ----------------------
 Example.ItemR.1 5 double values 2010-06-01 09:30:00.000 2010-06-01 09:31:00.000 1 unique quality [Raw]
 Example.ItemR.2 3 double values 2010-06-01 09:30:00.000 2010-06-01 09:31:00.000 1 unique quality [Raw]

Display the data from each item individually. You cannot display the items in one table because their
time stamps are not the same.

 Visualize and Preprocess OPC HDA Data

21-39

showValues(hdaDataSmall(1))
showValues(hdaDataSmall(2))

OPC HDA Data object for item Example.ItemR.1:

 TIMESTAMP VALUE QUALITY
 ======================= ============= ==========
 2010-06-01 09:30:00.000 0.000000 Raw (Good)
 2010-06-01 09:30:15.000 1.000000 Raw (Good)
 2010-06-01 09:30:30.000 2.000000 Raw (Good)
 2010-06-01 09:30:45.000 1.000000 Raw (Good)
 2010-06-01 09:31:00.000 0.000000 Raw (Good)

OPC HDA Data object for item Example.ItemR.2:

 TIMESTAMP VALUE QUALITY
 ======================= ============= ==========
 2010-06-01 09:30:00.000 1.000000 Raw (Good)
 2010-06-01 09:30:30.000 2.000000 Raw (Good)
 2010-06-01 09:31:00.000 3.000000 Raw (Good)

Attempt to convert the data to a double array. The conversion will fail.

try
 vals = double(hdaDataSmall);
catch exc
 disp(exc.message)
end

Conversion to double failed. All elements of the OPC HDA Data object must have the same time stamp.
Consider using 'TSUNION' or 'RESAMPLE' on the Data object.

The intersection of the items' time stamps results in a smaller, regularly sampled data set.

hdaDataIntersect = hdaDataSmall.tsintersect

hdaDataIntersect =

1-by-2 OPC HDA Data object:

 ItemID Value Start TimeStamp End TimeStamp Quality
 --------------- --------------- ----------------------- ----------------------- ----------------------
 Example.ItemR.1 3 double values 2010-06-01 09:30:00.000 2010-06-01 09:31:00.000 1 unique quality [Raw]
 Example.ItemR.2 3 double values 2010-06-01 09:30:00.000 2010-06-01 09:31:00.000 1 unique quality [Raw]

Use the showValues function to display all values.

Show these values together. You can do this because the time stamps are now regularly sampled.

showValues(hdaDataIntersect)

OPC HDA Data object array:

 TIMESTAMP Example.ItemR.1 Example.ItemR.2

21 Industrial Communication Toolbox Examples

21-40

 ======================= =============== ===============
 2010-06-01 09:30:00.000 0.000000 1.000000
 2010-06-01 09:30:30.000 2.000000 2.000000
 2010-06-01 09:31:00.000 0.000000 3.000000

Convert the data object into a double array.

vals = double(hdaDataIntersect)

vals =

 0 1
 2 2
 0 3

Use tsunion to return the union of time series in a Data object. New values are interpolated using
the method supplied (or linear interpolation if no method is supplied).

hdaDataUnion = hdaDataSmall.tsunion
showValues(hdaDataUnion)

hdaDataUnion =

1-by-2 OPC HDA Data object:

 ItemID Value Start TimeStamp End TimeStamp Quality
 --------------- --------------- ----------------------- ----------------------- ----------------------
 Example.ItemR.1 5 double values 2010-06-01 09:30:00.000 2010-06-01 09:31:00.000 1 unique quality [Raw]
 Example.ItemR.2 5 double values 2010-06-01 09:30:00.000 2010-06-01 09:31:00.000 2 unique qualities

Use the showValues function to display all values.

OPC HDA Data object array:

 TIMESTAMP Example.ItemR.1 Example.ItemR.2
 ======================= =============== ===============
 2010-06-01 09:30:00.000 0.000000 1.000000
 2010-06-01 09:30:15.000 1.000000 1.500000
 2010-06-01 09:30:30.000 2.000000 2.000000
 2010-06-01 09:30:45.000 1.000000 2.500000
 2010-06-01 09:31:00.000 0.000000 3.000000

Note how the quality is set to "Interpolated" for those new values in Example.ItemR.2.

showValues(hdaDataUnion(2))

OPC HDA Data object for item Example.ItemR.2:

 TIMESTAMP VALUE QUALITY
 ======================= ============= ===================
 2010-06-01 09:30:00.000 1.000000 Raw (Good)
 2010-06-01 09:30:15.000 1.500000 Interpolated (Good)
 2010-06-01 09:30:30.000 2.000000 Raw (Good)

 Visualize and Preprocess OPC HDA Data

21-41

 2010-06-01 09:30:45.000 2.500000 Interpolated (Good)
 2010-06-01 09:31:00.000 3.000000 Raw (Good)

Plot the data with markers to show how the methods work.

subplot(2,1,1);
plot(hdaDataSmall,'Marker','.');
hold all
plot(hdaDataIntersect,'Marker','o','LineStyle','none');
title('Intersection of time series in Data object');
subplot(2,1,2);
plot(hdaDataSmall,'Marker','.');
hold all
plot(hdaDataUnion,'Marker','o','LineStyle','none');
title('Union of time series in Data object');

Resample the small data set at specified time steps.

newTS = datenum(2010,6,1,9,30,[0:60]);
hdaDataResampled = resample(hdaDataSmall,newTS)
figure;
plot(hdaDataSmall);
hold all
stairs(hdaDataResampled);

hdaDataResampled =

21 Industrial Communication Toolbox Examples

21-42

1-by-2 OPC HDA Data object:

 ItemID Value Start TimeStamp End TimeStamp Quality
 --------------- ---------------- ----------------------- ----------------------- ------------------
 Example.ItemR.1 61 double values 2010-06-01 09:30:00.000 2010-06-01 09:31:00.000 2 unique qualities
 Example.ItemR.2 61 double values 2010-06-01 09:30:00.000 2010-06-01 09:31:00.000 2 unique qualities

Use the showValues function to display all values.

 Visualize and Preprocess OPC HDA Data

21-43

Browse OPC UA Server Namespace

This example shows you how to find OPC Unified Architecture (UA) servers, connect to them, and
browse their namespace to find nodes of interest.

To run this example in your MATLAB® session, you must install and start the Prosys OPC UA
Simulation Server. For further information, see the Getting Started section of the Industrial
Communication Toolbox™ documentation.

OPC UA servers structure available data through one or more namespaces, consisting of multiple
connected Nodes. Each namespace has an Index uniquely identifying that namespace. The toolbox
exposes two types of OPC UA Nodes: Object nodes, which help to organise data, and Variable nodes
which store data in their Value property. Variables nodes may contain other Variable nodes as
children.

All OPC UA servers must publish a Server node, containing information about the OPC UA server
including capabilities of that server, available functionality of the server and other diagnostic
information. The Server node must exist as namespace index 0, named 'Server'. This example will
explore the ServerCapabilities node contained in the Server node of an example OPC UA server.

Explore Available OPC UA Servers on a Host

NOTE: This section of this example requires you to install the Local Discovery Service, and configure
the Prosys OPC UA Simulation Server to register with the LDS. Instructions for how to do this are
included in the Getting Started section of the Industrial Communication Toolbox documentation.

OPC UA servers may register with a Local Discovery Service on their host. The Local Discovery
Service (LDS) publishes all available servers, as well as their unique "address" (or URL) for
connecting to that server.

You can discover OPC UA servers available on a host using opcuaserverinfo. This example uses
the local host.

serverList = opcuaserverinfo('localhost')

serverList =

1×3 OPC UA ServerInfo array:
 index Description Hostname Port
 ----- ----------------------------------- ---------------------------------- -----
 1 SimulationServer tmopti01win1064.dhcp.mathworks.com 53530
 2 UA Sample Server tmopti01win1064 51210
 3 Quickstart Historical Access Server tmopti01win1064 62550

The list of servers shows the available OPC UA servers, and the hostname and port number on which
you can connect to the server. You can find a specific server by searching the Description of the
servers. Find the server containing the word "Simulation".

sampleServerInfo = findDescription(serverList, 'Simulation')

sampleServerInfo =

OPC UA ServerInfo 'SimulationServer':

21 Industrial Communication Toolbox Examples

21-44

 Connection Information
 Hostname: 'tmopti01win1064.dhcp.mathworks.com'
 Port: 53530

Construct an OPC UA Client and Connect to the Server

In order to browse the server namespace, you need to construct an OPC UA Client and connect that
client to the server. If you know the hostname and port of the OPC UA server, you could simply
construct an OPC UA Client using the hostname and port arguments.

uaClient = opcua('localhost', 53530);

If you have previously discovered the server using the opcuaserverinfo command, you can
construct the client directly from the opcuaserverinfo results.

uaClient = opcua(sampleServerInfo)

uaClient =

OPC UA Client SimulationServer:
 Hostname: tmopti01win1064.dhcp.mathworks.com
 Port: 53530
 Timeout: 10

 Status: Disconnected

Initially the client is disconnected from the server, and shows a brief summary of the client
properties. You know that the client is disconnected by querying the Status property, or calling the
isConnected function.

status = uaClient.Status

isConnected(uaClient)

status =

 'Disconnected'

ans =

 logical

 0

Once you connect the client to the server, additional properties from the server are displayed.

connect(uaClient)
uaClient

uaClient =

OPC UA Client SimulationServer:

 Browse OPC UA Server Namespace

21-45

 Hostname: tmopti01win1064.dhcp.mathworks.com
 Port: 53530
 Timeout: 10

 Status: Connected

 ServerState: Running

 MinSampleRate: 0 sec
 MaxHistoryReadNodes: 0
 MaxHistoryValuesPerNode: 0
 MaxReadNodes: 0
 MaxWriteNodes: 0

The display shows that the client Status is now 'Connected', the server is in the 'Running' state, and
the client stores information regarding server limits. In this case, all limits are set to zero, indicating
that there is no server-wide limit for sample rates, maximum nodes or values for read operations on
the Sample Server.

Browsing the Server Namespace

The server namespace is incrementally retrieved directly into the OPC UA Client variable in MATLAB.
You access the top level of the server namespace using the Namespace property. This property stores
OPC UA Nodes. Each node can contain one or more Children, which are themselves nodes.

topNodes = uaClient.Namespace

topNodes =

1x6 OPC UA Node array:
 index Name NsInd Identifier NodeType Children
 ----- ----------------------- ----- ----------------------- -------- --------
 1 Server 0 2253 Object 12
 2 MyObjects 2 MyObjectsFolder Object 1
 3 StaticData 3 StaticData Object 9
 4 NonUaNodeComplianceTest 4 NonUaNodeComplianceTest Object 33
 5 Simulation 5 85/0:Simulation Object 7
 6 MyBigNodeManager 6 MyBigNodeManager Object 1000

The node named 'Server' contains 12 children.

You can search the namespace using indexing into the Children property of available nodes. For
example, to find the ServerCapabilities node, you can query the Children of the Server node.

serverChildren = topNodes(1).Children

serverChildren =

1x12 OPC UA Node array:
 index Name NsInd Identifier NodeType Children
 ----- ------------------- ----- ---------- -------- --------
 1 ServerStatus 0 2256 Variable 6
 2 ServerCapabilities 0 2268 Object 14
 3 ServerDiagnostics 0 2274 Object 4
 4 VendorServerInfo 0 2295 Object 0

21 Industrial Communication Toolbox Examples

21-46

 5 ServerRedundancy 0 2296 Object 5
 6 Namespaces 0 11715 Object 1
 7 ServerConfiguration 0 12637 Object 5
 8 NamespaceArray 0 2255 Variable 0
 9 Auditing 0 2994 Variable 0
 10 ServerArray 0 2254 Variable 0
 11 EstimatedReturnTime 0 12885 Variable 0
 12 ServiceLevel 0 2267 Variable 0

The ServerCapabilities node is the second node in the list.

serverCapabilities = serverChildren(2)

serverCapabilities =

OPC UA Node object:
 Name: ServerCapabilities
 Description: Describes capabilities supported by the server.
 NamespaceIndex: 0
 Identifier: 2268
 NodeType: Object

 Parent: Server
 Children: 14 nodes.

Searching for Nodes in the Namespace

You can search for nodes from a Node variable, or from the Namespace property directly. To find the
'ServerCapabilities' node without indexing into the Namespace property, use findNodeByName. To
avoid the search finding all instances of nodes containing the word 'ServerCapabilities' you use the
'-once' parameter.

serverCapabilities = findNodeByName(topNodes, 'ServerCapabilities', '-once')

serverCapabilities =

OPC UA Node object:
 Name: ServerCapabilities
 Description: Describes capabilities supported by the server.
 NamespaceIndex: 0
 Identifier: 2268
 NodeType: Object

 Parent: Server
 Children: 14 nodes.

To find all nodes containing the word 'Double' in the Name, query all topNodes using the '-
partial' parameter. Note that this search will load the entire namespace into MATLAB, so use this
search method with caution.

doubleNodes = findNodeByName(topNodes, 'Double', '-partial')

doubleNodes =

 Browse OPC UA Server Namespace

21-47

1x6 OPC UA Node array:
 index Name NsInd Identifier NodeType Children
 ----- --------------------- ----- --------------------- -------- --------
 1 Double 4 Double Variable 0
 2 DoubleAnalogItemArray 3 DoubleAnalogItemArray Variable 3
 3 DoubleAnalogItem 3 DoubleAnalogItem Variable 3
 4 DoubleDataItem 3 DoubleDataItem Variable 1
 5 DoubleArray 3 DoubleArray Variable 0
 6 Double 3 Double Variable 0

Understanding the NodeType

Nodes have a NodeType which describes whether that node is simply an organisational unit (an
Object NodeType) or contains data that can be read or written (a Variable NodeType). An example of
an Object node is tha ServerCapabilities node shown above. You cannot read data from an Object
node. In this example, doubleNodes contains no Object nodes, and 6 Variable nodes.

allNodeTypes = {doubleNodes.NodeType}

allNodeTypes =

 1×6 cell array

 Columns 1 through 4

 {'Variable'} {'Variable'} {'Variable'} {'Variable'}

 Columns 5 through 6

 {'Variable'} {'Variable'}

Variable NodeTypes may contain Children - A NodeType of Variable does not guarantee that the node
contains no Children. The second node listed is a variable node (and so its Value can can be read) but
also has children (which can be read individually). For information on reading values from a node, see
readValue.

Understanding Variable NodeType Properties

A Variable node has additional properties describing the data stored in the Variable node, including
the server data type and access permissions for that node. To view these properties, display a
Variable node.

doubleNodes(2)

ans =

OPC UA Node object:
 Name: DoubleAnalogItemArray
 Description:
 NamespaceIndex: 3
 Identifier: DoubleAnalogItemArray
 NodeType: Variable

21 Industrial Communication Toolbox Examples

21-48

 Parent: AnalogItemArrays
 Children: 3 nodes.

 ServerDataType: Double
 AccessLevelCurrent: read/write
 AccessLevelHistory: none
 Historizing: 0

This node has a ServerDataType of 'Double', and allows reading and writing of the Current value
(AccessLevelCurrent property) but supports no historical data reading (AccessLevelHistory).
The server is not Historizing this node, as evidenced by the Historizing property.

Some properties, such as ServerValueRank, and ServerArrayDimensions are not shown in the
display of a node, but can be queried through the respective property. See help on these properties
for further information.

doubleNodes(2).ServerArrayDimensions

ans =

 uint32

 0

Constructing Nodes Directly

Nodes are defined uniquely by their NamespaceIndex and their Identifier. You can construct a known
node without browsing the Namespace property using the opcuanode function. For example, to
construct the ServerCapabilities node directly you can use the NamespaceIndex 0 and Identifier 2268
(all OPC UA servers must publish a ServerCapabilities node with this NamespaceIndex and
Identifier).

capabilitiesNode = opcuanode(0, 2268, uaClient)

capabilitiesNode =

OPC UA Node object:
 Name: ServerCapabilities
 Description: Describes capabilities supported by the server.
 NamespaceIndex: 0
 Identifier: 2268
 NodeType: Object

 Children: 14 nodes.

Note that nodes constructed using opcuanode have no Parent property.

capabilitiesNode.Parent

ans =

Empty OPC UA Node object.

 Browse OPC UA Server Namespace

21-49

However their Children are automatically retrieved if the node is associated with a connected OPC
UA Client.

capabilitiesNode.Children

ans =

1x14 OPC UA Node array:
 index Name NsInd Identifier NodeType Children
 ----- ---------------------------- ----- ---------- -------- --------
 1 ModellingRules 0 2996 Object 6
 2 AggregateFunctions 0 2997 Object 14
 3 HistoryServerCapabilities 0 11192 Object 15
 4 OperationLimits 0 11704 Object 12
 5 LocaleIdArray 0 2271 Variable 0
 6 MinSupportedSampleRate 0 2272 Variable 0
 7 MaxQueryContinuationPoints 0 2736 Variable 0
 8 MaxByteStringLength 0 12911 Variable 0
 9 ServerProfileArray 0 2269 Variable 0
 10 MaxHistoryContinuationPoints 0 2737 Variable 0
 11 SoftwareCertificates 0 3704 Variable 0
 12 MaxStringLength 0 11703 Variable 0
 13 MaxBrowseContinuationPoints 0 2735 Variable 0
 14 MaxArrayLength 0 11702 Variable 0

Disconnect from Server

When you have finished communicating with the server, you should disconnect the client from the
server. This is also automatically performed when the client variable goes out of scope in MATLAB.

disconnect(uaClient);

21 Industrial Communication Toolbox Examples

21-50

Read and Write Current OPC UA Server Data

This example shows you how to read and write data to an OPC UA server.

To run this example in your MATLAB® session, you must install and start the Prosys OPC UA
Simulation Server. For further information, see the Getting Started section of the Industrial
Communication Toolbox™ documentation.

Create a Client and Connect to the Server

You create client objects using the results of a query to the Local Discovery Service using
opcuaserverinfo, or directly using the host name and port number of the server you are
connecting to. In this case, use the host and port number syntax.

uaClient = opcua('localhost',53530);
connect(uaClient)

Find the DoubleDataItem, FloatDataItem, and Int16DataItem nodes in the StaticData namespace.

staticNode = findNodeByName(uaClient.Namespace,'StaticData','-once');
dataItemsNode = findNodeByName(staticNode,'DataItems','-once');
doubleNode = findNodeByName(dataItemsNode,'DoubleDataItem');
floatNode = findNodeByName(dataItemsNode,'FloatDataItem');
int16Node = findNodeByName(dataItemsNode,'Int16DataItem');
nodes = [doubleNode,floatNode,int16Node]

nodes =

1x3 OPC UA Node array:
 index Name NsInd Identifier NodeType Children
 ----- -------------- ----- -------------- -------- --------
 1 DoubleDataItem 3 DoubleDataItem Variable 1
 2 FloatDataItem 3 FloatDataItem Variable 1
 3 Int16DataItem 3 Int16DataItem Variable 1

Read Values from Nodes

Use readValue to read the current value of a node. You can query the Value, the Timestamp when
the Value was updated, and the Quality associated with the value when written.

[v,t,q] = readValue(uaClient,nodes)

v =

 3×1 cell array

 {[0]}
 {[0]}
 {[0]}

t =

 Read and Write Current OPC UA Server Data

21-51

 3×1 datetime array

 19-Mar-2019 02:52:35
 19-Mar-2019 02:52:35
 19-Mar-2019 02:52:35

q =

OPC UA Quality ID:
 'Good'
 'Good'
 'Good'

When you read from multiple nodes, the Values are returned as a cell array. The class of the data on
the server is preserved as much as possible.

valClasses = cellfun(@class,v,'UniformOutput',false)

valClasses =

 3×1 cell array

 {'double'}
 {'single'}
 {'int16' }

The timestamp is returned as a MATLAB® datetime variable. It represents the time when the source
provided the value to the server.

t

t =

 3×1 datetime array

 19-Mar-2019 02:52:35
 19-Mar-2019 02:52:35
 19-Mar-2019 02:52:35

The quality is returned as an OPC UA Quality, which displays as a text description.

q

q =

OPC UA Quality ID:
 'Good'
 'Good'
 'Good'

You can interrogate the Quality to determine characteristics of the returned quality. In this example,
the quality is good.

21 Industrial Communication Toolbox Examples

21-52

isGood(q)

ans =

 3×1 logical array

 1
 1
 1

The value is not interpolated, but is a raw value (stored by the server directly from the sensor).

interpolated = isInterpolated(q)

raw = isRaw(q)

interpolated =

 3×1 logical array

 0
 0
 0

raw =

 3×1 logical array

 1
 1
 1

Write Data to Nodes

You can write data to any scalar node. When you write to multiple nodes, you must pass a cell array
of values, one for each node to be written.

newValues = {12,65,-4};
writeValue(uaClient,nodes,newValues);

To verify that the values were written correctly, and retrieve the value again.

serverValues = readValue(uaClient,nodes)

serverValues =

 3×1 cell array

 {[12]}
 {[65]}
 {[-4]}

 Read and Write Current OPC UA Server Data

21-53

You can update values directly within the cell array and write them back to the server.

serverValues{2} = serverValues{2} + 1;
writeValue(uaClient,nodes,serverValues);

Read and Write Values With a Single Node

When working with a single node, you receive and can pass and the value directly, without using a
cell array.

dblValue = readValue(uaClient, doubleNode)
writeValue(uaClient, doubleNode, dblValue+15.6)
newDbl = readValue(uaClient, doubleNode)

dblValue =

 12

newDbl =

 27.6000

Reading and Writing to Nodes Directly

You can write and read directly from the node variable, as long as that node was created from the
client (using the Namespace property or browseNamespace) or you passed a client to the opcuanode
function when creating your node variable.

[vals,ts,qual] = readValue(nodes)
writeValue(nodes,v)

vals =

 3×1 cell array

 {[27.6000]}
 {[66]}
 {[-4]}

ts =

 3×1 datetime array

 19-Mar-2019 02:52:36
 19-Mar-2019 02:52:36
 19-Mar-2019 02:52:36

qual =

OPC UA Quality ID:
 'Good'
 'Good'
 'Good'

21 Industrial Communication Toolbox Examples

21-54

Disconnect from Server

When you have finished communicating with the server, disconnect the client from the server. This is
also automatically performed when the client variable goes out of scope in MATLAB.

disconnect(uaClient);

 Read and Write Current OPC UA Server Data

21-55

Read Historical OPC UA Server Data

This example shows you how to read historical data from an OPC UA server.

This example reads data from a Prosys OPC UA Simulation Server v4.0.2. For other Prosys server
versions, you might have to modify this code.

To run this example in your MATLAB® session, you must install and start the Prosys OPC UA
Simulation Server. For further information, see the Getting Started section of the Industrial
Communication Toolbox™ documentation.

Create a Client and Connect to the Server

You create client objects using the results of a query to the Local Discovery Service using
opcuaserverinfo, or directly using the host name and port number of the server you are
connecting to. In this case, connect directly to the OPC UA server on port 53530.

uaClient = opcua('localhost',53530);
connect(uaClient);
uaClient.Status

ans =

 'Connected'

Define Nodes to Read Historical Data

The Prosys OPC UA Simulation Server provides simulated signals for nodes in the "Simulation"
branch. By default the Simulation Server updates the values each second. Define these nodes using
the opcuanode function.

simNodeIds = {'Random';
 'Triangle';
 'Sinusoid'};
simNodes = opcuanode(3,simNodeIds,uaClient)

simNodes =

1×3 OPC UA Node array:
 index Name NsInd Identifier NodeType
 ----- -------- ----- ---------- --------
 1 Random 3 Random Variable
 2 Triangle 3 Triangle Variable
 3 Sinusoid 3 Sinusoid Variable

Read Historical Data from Nodes

Use the readHistory function to read the history of a node. You must pass a time range in which to
read historical data. For the Prosys server, read the most recent 30 seconds of data.

dataSample = readHistory(uaClient,simNodes,datetime('now')-seconds(30),datetime('now'))

dataSample =

21 Industrial Communication Toolbox Examples

21-56

1-by-3 OPC UA Data object array:

 Timestamp Random Triangle Sinusoid
 ----------------------- -------------------------- -------------------------- --------------------------
 2019-12-20 01:18:14.000 1.402465 [Good (Raw)] 0.266667 [Good (Raw)] 0.415823 [Good (Raw)]
 2019-12-20 01:18:15.000 1.044139 [Good (Raw)] 0.000000 [Good (Raw)] 0.000000 [Good (Raw)]
 2019-12-20 01:18:16.000 -1.857952 [Good (Raw)] -0.266667 [Good (Raw)] -0.415823 [Good (Raw)]
 2019-12-20 01:18:17.000 1.783723 [Good (Raw)] -0.533333 [Good (Raw)] -0.813473 [Good (Raw)]
 2019-12-20 01:18:18.000 -1.095435 [Good (Raw)] -0.800000 [Good (Raw)] -1.175570 [Good (Raw)]
 2019-12-20 01:18:19.000 -1.178567 [Good (Raw)] -1.066667 [Good (Raw)] -1.486290 [Good (Raw)]
 2019-12-20 01:18:20.000 -1.548359 [Good (Raw)] -1.333333 [Good (Raw)] -1.732051 [Good (Raw)]
 2019-12-20 01:18:21.000 -0.438983 [Good (Raw)] -1.600000 [Good (Raw)] -1.902113 [Good (Raw)]
 2019-12-20 01:18:22.000 -0.785842 [Good (Raw)] -1.866667 [Good (Raw)] -1.989044 [Good (Raw)]
 2019-12-20 01:18:23.000 1.419149 [Good (Raw)] -1.866667 [Good (Raw)] -1.989044 [Good (Raw)]
 2019-12-20 01:18:24.000 1.049357 [Good (Raw)] -1.600000 [Good (Raw)] -1.902113 [Good (Raw)]
 2019-12-20 01:18:25.000 -1.932999 [Good (Raw)] -1.333333 [Good (Raw)] -1.732051 [Good (Raw)]
 2019-12-20 01:18:26.000 1.720142 [Good (Raw)] -1.066667 [Good (Raw)] -1.486290 [Good (Raw)]
 2019-12-20 01:18:27.000 -1.170482 [Good (Raw)] -0.800000 [Good (Raw)] -1.175571 [Good (Raw)]
 2019-12-20 01:18:28.000 -1.540274 [Good (Raw)] -0.533333 [Good (Raw)] -0.813473 [Good (Raw)]
 2019-12-20 01:18:29.000 -0.430899 [Good (Raw)] -0.266667 [Good (Raw)] -0.415823 [Good (Raw)]
 2019-12-20 01:18:30.000 -0.869489 [Good (Raw)] -0.000000 [Good (Raw)] -0.000000 [Good (Raw)]
 2019-12-20 01:18:31.000 -1.630916 [Good (Raw)] 0.266667 [Good (Raw)] 0.415823 [Good (Raw)]
 2019-12-20 01:18:32.000 1.999292 [Good (Raw)] 0.533333 [Good (Raw)] 0.813473 [Good (Raw)]
 2019-12-20 01:18:33.000 -0.891333 [Good (Raw)] 0.800000 [Good (Raw)] 1.175570 [Good (Raw)]
 2019-12-20 01:18:34.000 -1.238192 [Good (Raw)] 1.066667 [Good (Raw)] 1.486290 [Good (Raw)]
 2019-12-20 01:18:35.000 -0.220548 [Good (Raw)] 1.333333 [Good (Raw)] 1.732051 [Good (Raw)]
 2019-12-20 01:18:36.000 -0.590339 [Good (Raw)] 1.600000 [Good (Raw)] 1.902113 [Good (Raw)]
 2019-12-20 01:18:37.000 0.519036 [Good (Raw)] 1.866667 [Good (Raw)] 1.989044 [Good (Raw)]
 2019-12-20 01:18:38.000 0.172177 [Good (Raw)] 1.866667 [Good (Raw)] 1.989044 [Good (Raw)]
 2019-12-20 01:18:39.000 -0.589250 [Good (Raw)] 1.600000 [Good (Raw)] 1.902113 [Good (Raw)]
 2019-12-20 01:18:40.000 -0.959042 [Good (Raw)] 1.333333 [Good (Raw)] 1.732051 [Good (Raw)]
 2019-12-20 01:18:41.000 0.425527 [Good (Raw)] 1.066667 [Good (Raw)] 1.486290 [Good (Raw)]
 2019-12-20 01:18:42.000 0.078668 [Good (Raw)] 0.800000 [Good (Raw)] 1.175571 [Good (Raw)]
 2019-12-20 01:18:43.000 1.188043 [Good (Raw)] 0.533333 [Good (Raw)] 0.813473 [Good (Raw)]

Read Historical Data at Specific Times

You can ask the server to retrieve data at specific times. If the server does not have an archived value
for that specific time, an interpolated (or extrapolated) value is returned. Use the readAtTime
function to retrieve data each minute for the last 10 minutes.

timesToReturn = datetime('now')-minutes(10):minutes(1):datetime('now');
dataRegular = readAtTime(uaClient,simNodes,timesToReturn)

dataRegular =

1-by-3 OPC UA Data object array:

 Timestamp Random Triangle Sinusoid
 ----------------------- -------------------------- -------------------------- --------------------------
 2019-12-20 01:08:44.000 -0.083361 [Good (Raw)] 0.266667 [Good (Raw)] 0.415823 [Good (Raw)]
 2019-12-20 01:09:44.000 0.043744 [Good (Raw)] 0.266667 [Good (Raw)] 0.415823 [Good (Raw)]
 2019-12-20 01:10:44.000 1.199272 [Good (Raw)] 0.266667 [Good (Raw)] 0.415823 [Good (Raw)]
 2019-12-20 01:11:44.000 1.259184 [Good (Raw)] 0.266667 [Good (Raw)] 0.415823 [Good (Raw)]
 2019-12-20 01:12:44.000 0.193783 [Good (Raw)] 0.266667 [Good (Raw)] 0.415823 [Good (Raw)]

 Read Historical OPC UA Server Data

21-57

 2019-12-20 01:13:44.000 -1.585967 [Good (Raw)] 0.266667 [Good (Raw)] 0.415823 [Good (Raw)]
 2019-12-20 01:14:44.000 1.073438 [Good (Raw)] 0.266667 [Good (Raw)] 0.415823 [Good (Raw)]
 2019-12-20 01:15:44.000 0.099768 [Good (Raw)] 0.266667 [Good (Raw)] 0.415823 [Good (Raw)]
 2019-12-20 01:16:44.000 -1.368735 [Good (Raw)] 0.266667 [Good (Raw)] 0.415823 [Good (Raw)]
 2019-12-20 01:17:44.000 1.791922 [Good (Raw)] 0.266667 [Good (Raw)] 0.415823 [Good (Raw)]
 2019-12-20 01:18:44.000 0.818252 [Good (Raw)] 0.266667 [Good (Raw)] 0.415823 [Good (Raw)]

Read Processed Data from the Server

OPC UA Servers provide aggregate functions for returning preprocessed data to clients. This is most
useful when you need to query data over a large period of time.

Query the AggregateFunctions property of a connected client to find out what aggregate functions
the server supports.

uaClient.AggregateFunctions

ans =

 14×1 cell array

 {'Interpolative' }
 {'Average' }
 {'Minimum' }
 {'Maximum' }
 {'MinimumActualTime'}
 {'MaximumActualTime'}
 {'Range' }
 {'Count' }
 {'Start' }
 {'End' }
 {'Delta' }
 {'WorstQuality' }
 {'StartBound' }
 {'EndBound' }

Read the Average value for each 30 second period over the last 10 minutes.

dataAverage = readProcessed(uaClient,simNodes,'Average',seconds(30),datetime('now')-minutes(10),datetime('now'))

dataAverage =

1-by-3 OPC UA Data object array:

 Timestamp Random Triangle Sinusoid
 ----------------------- --------------------------------- --------------------------------- ---------------------------------
 2019-12-20 01:08:44.000 -0.008396 [Good (Calculated)] -0.000000 [Good (Calculated)] 0.000000 [Good (Calculated)]
 2019-12-20 01:09:14.000 0.071422 [Good (Calculated)] -0.000000 [Good (Calculated)] -0.000000 [Good (Calculated)]
 2019-12-20 01:09:44.000 0.034084 [Good (Calculated)] -0.000000 [Good (Calculated)] -0.000000 [Good (Calculated)]
 2019-12-20 01:10:14.000 0.190256 [Good (Calculated)] -0.000000 [Good (Calculated)] 0.000000 [Good (Calculated)]
 2019-12-20 01:10:44.000 0.088148 [Good (Calculated)] -0.000000 [Good (Calculated)] -0.000000 [Good (Calculated)]
 2019-12-20 01:11:14.000 0.065122 [Good (Calculated)] 0.000000 [Good (Calculated)] -0.000000 [Good (Calculated)]
 2019-12-20 01:11:44.000 -0.057444 [Good (Calculated)] 0.000000 [Good (Calculated)] 0.000000 [Good (Calculated)]
 2019-12-20 01:12:14.000 -0.047782 [Good (Calculated)] 0.000000 [Good (Calculated)] -0.000000 [Good (Calculated)]

21 Industrial Communication Toolbox Examples

21-58

 2019-12-20 01:12:44.000 0.253328 [Good (Calculated)] 0.000000 [Good (Calculated)] -0.000000 [Good (Calculated)]
 2019-12-20 01:13:14.000 -0.018746 [Good (Calculated)] 0.000000 [Good (Calculated)] 0.000000 [Good (Calculated)]
 2019-12-20 01:13:44.000 0.103775 [Good (Calculated)] 0.000000 [Good (Calculated)] -0.000000 [Good (Calculated)]
 2019-12-20 01:14:14.000 0.010857 [Good (Calculated)] 0.000000 [Good (Calculated)] -0.000000 [Good (Calculated)]
 2019-12-20 01:14:44.000 -0.370672 [Good (Calculated)] 0.000000 [Good (Calculated)] 0.000000 [Good (Calculated)]
 2019-12-20 01:15:14.000 -0.198687 [Good (Calculated)] -0.000000 [Good (Calculated)] -0.000000 [Good (Calculated)]
 2019-12-20 01:15:44.000 -0.025481 [Good (Calculated)] -0.000000 [Good (Calculated)] -0.000000 [Good (Calculated)]
 2019-12-20 01:16:14.000 0.067565 [Good (Calculated)] -0.000000 [Good (Calculated)] 0.000000 [Good (Calculated)]
 2019-12-20 01:16:44.000 0.085904 [Good (Calculated)] -0.000000 [Good (Calculated)] -0.000000 [Good (Calculated)]
 2019-12-20 01:17:14.000 0.018061 [Good (Calculated)] -0.000000 [Good (Calculated)] -0.000000 [Good (Calculated)]
 2019-12-20 01:17:44.000 -0.033414 [Good (Calculated)] -0.000000 [Good (Calculated)] 0.000000 [Good (Calculated)]
 2019-12-20 01:18:14.000 -0.205573 [Good (Calculated)] -0.000000 [Good (Calculated)] -0.000000 [Good (Calculated)]

Read the Average value for each half second period over the last 5 seconds. Note how the quality of
the data includes Good quality, and Bad quality where there is no data available to perform the
calculation.

dataMixedQuality = readProcessed(uaClient,simNodes,'Average',seconds(0.5),datetime('now')-seconds(5),datetime('now'))

dataMixedQuality =

1-by-3 OPC UA Data object array:

 Timestamp Random Triangle Sinusoid
 ----------------------- --------------------------------- --------------------------------- ---------------------------------
 2019-12-20 01:18:39.000 0.000000 [Bad:NoData (Raw)] 0.000000 [Bad:NoData (Raw)] 0.000000 [Bad:NoData (Raw)]
 2019-12-20 01:18:39.500 -0.589250 [Good (Calculated)] 1.600000 [Good (Calculated)] 1.902113 [Good (Calculated)]
 2019-12-20 01:18:40.000 0.000000 [Bad:NoData (Raw)] 0.000000 [Bad:NoData (Raw)] 0.000000 [Bad:NoData (Raw)]
 2019-12-20 01:18:40.500 -0.959042 [Good (Calculated)] 1.333333 [Good (Calculated)] 1.732051 [Good (Calculated)]
 2019-12-20 01:18:41.000 0.000000 [Bad:NoData (Raw)] 0.000000 [Bad:NoData (Raw)] 0.000000 [Bad:NoData (Raw)]
 2019-12-20 01:18:41.500 0.425527 [Good (Calculated)] 1.066667 [Good (Calculated)] 1.486290 [Good (Calculated)]
 2019-12-20 01:18:42.000 0.000000 [Bad:NoData (Raw)] 0.000000 [Bad:NoData (Raw)] 0.000000 [Bad:NoData (Raw)]
 2019-12-20 01:18:42.500 0.078668 [Good (Calculated)] 0.800000 [Good (Calculated)] 1.175571 [Good (Calculated)]
 2019-12-20 01:18:43.000 0.000000 [Bad:NoData (Raw)] 0.000000 [Bad:NoData (Raw)] 0.000000 [Bad:NoData (Raw)]
 2019-12-20 01:18:43.500 1.188043 [Good (Calculated)] 0.533333 [Good (Calculated)] 0.813473 [Good (Calculated)]

Filter the quality of the data to return only the Good data.

dataGood = filterByQuality(dataMixedQuality,'good')

dataGood =

1-by-3 OPC UA Data object array:

 Timestamp Random Triangle Sinusoid
 ----------------------- --------------------------------- --------------------------------- ---------------------------------
 2019-12-20 01:18:39.500 -0.589250 [Good (Calculated)] 1.600000 [Good (Calculated)] 1.902113 [Good (Calculated)]
 2019-12-20 01:18:40.500 -0.959042 [Good (Calculated)] 1.333333 [Good (Calculated)] 1.732051 [Good (Calculated)]
 2019-12-20 01:18:41.500 0.425527 [Good (Calculated)] 1.066667 [Good (Calculated)] 1.486290 [Good (Calculated)]
 2019-12-20 01:18:42.500 0.078668 [Good (Calculated)] 0.800000 [Good (Calculated)] 1.175571 [Good (Calculated)]
 2019-12-20 01:18:43.500 1.188043 [Good (Calculated)] 0.533333 [Good (Calculated)] 0.813473 [Good (Calculated)]

 Read Historical OPC UA Server Data

21-59

Disconnect from Server

When you have finished communicating with the server, disconnect the client from the server. This is
also automatically performed when the client variable goes out of scope in MATLAB®.

disconnect(uaClient);

21 Industrial Communication Toolbox Examples

21-60

Visualize and Preprocess OPC UA Data

This example shows you how to work with OPC UA Data objects.

You create OPC UA Data objects when you read historical data from an OPC UA server. OPC UA Data
objects allow you to store, visualize and manipulate historical data before converting that data to
builtin data types for further processing in MATLAB.

For more information on generating OPC UA Data objects, see the example “Read Historical OPC UA
Server Data” on page 21-56.

Load Sample OPC UA Data Set

Load the sample data into the workspace.

load demoUA_SampleData

Display OPC UA Data objects

Examine the workspace to see what variables have been loaded.

whos

 Name Size Bytes Class Attributes

 dataSample 1x3 5926 opc.ua.Data

Display a summary of the sample data.

summary(dataSample)

1-by-3 OPC UA Data object:

 Name Value Start Timestamp End Timestamp Quality
 ------ ---------------- ----------------------- ----------------------- ------------------
 Double 9 double values 2015-04-22 09:00:10.000 2015-04-22 09:01:30.000 3 unique qualities
 Float 12 single values 2015-04-22 09:00:02.000 2015-04-22 09:01:30.000 3 unique qualities
 Int32 12 int32 values 2015-04-22 09:00:02.000 2015-04-22 09:01:30.000 3 unique qualities

The data object contains three data sets. The first element Double contains 9 values, the second and
third have 12 values each.

See whether the Float and Int32 data sets have the same timestamp.

arrayHasSameTimestamp(dataSample(2:3))

ans =

 1

Display the Float and Int32 data sets together. Because all the elements have the same timestamp,
a table of values can be displayed

dataSample(2:3)

 Visualize and Preprocess OPC UA Data

21-61

ans =

1-by-2 OPC UA Data object array:

 Timestamp Float Int32
 ----------------------- ------------------------------- --------------------------------
 2015-04-22 09:00:02.000 10.000000 [Good (Raw)] 10 [Good (Raw)]
 2015-04-22 09:00:25.000 20.000000 [Good (Raw)] 20 [Good (Raw)]
 2015-04-22 09:00:28.000 25.000000 [Good (Raw)] 25 [Good (Raw)]
 2015-04-22 09:00:40.000 30.000000 [Good (Raw)] 30 [Good (Raw)]
 2015-04-22 09:00:42.000 0.000000 [Bad (Raw)] 0 [Bad (Raw)]
 2015-04-22 09:00:48.000 4.000000 [Good (Raw)] 40 [Good (Raw)]
 2015-04-22 09:00:52.000 50.000000 [Good (Raw)] 50 [Good (Raw)]
 2015-04-22 09:01:12.000 60.000000 [Good (Raw)] 60 [Good (Raw)]
 2015-04-22 09:01:17.000 70.000000 [Uncertain (Raw)] 70 [Uncertain (Raw)]
 2015-04-22 09:01:23.000 70.000000 [Good (Raw)] 70 [Good (Raw)]
 2015-04-22 09:01:26.000 80.000000 [Good (Raw)] 80 [Good (Raw)]
 2015-04-22 09:01:30.000 90.000000 [Good (Raw)] 90 [Good (Raw)]

Change the Date Display Format

Get the current date display format using opc.getDateDisplayFormat.

origFormat = opc.getDateDisplayFormat;

Change the display format to standard US date format and display the value again.

opc.setDateDisplayFormat('mm/dd/yyyy HH:MM AM');
dataSample(2:3)

ans =

1-by-2 OPC UA Data object array:

 Timestamp Float Int32
 ------------------- ------------------------------- --------------------------------
 04/22/2015 9:00 AM 10.000000 [Good (Raw)] 10 [Good (Raw)]
 04/22/2015 9:00 AM 20.000000 [Good (Raw)] 20 [Good (Raw)]
 04/22/2015 9:00 AM 25.000000 [Good (Raw)] 25 [Good (Raw)]
 04/22/2015 9:00 AM 30.000000 [Good (Raw)] 30 [Good (Raw)]
 04/22/2015 9:00 AM 0.000000 [Bad (Raw)] 0 [Bad (Raw)]
 04/22/2015 9:00 AM 4.000000 [Good (Raw)] 40 [Good (Raw)]
 04/22/2015 9:00 AM 50.000000 [Good (Raw)] 50 [Good (Raw)]
 04/22/2015 9:01 AM 60.000000 [Good (Raw)] 60 [Good (Raw)]
 04/22/2015 9:01 AM 70.000000 [Uncertain (Raw)] 70 [Uncertain (Raw)]
 04/22/2015 9:01 AM 70.000000 [Good (Raw)] 70 [Good (Raw)]
 04/22/2015 9:01 AM 80.000000 [Good (Raw)] 80 [Good (Raw)]
 04/22/2015 9:01 AM 90.000000 [Good (Raw)] 90 [Good (Raw)]

Reset the display format to the default.

opc.setDateDisplayFormat('default')

ans =

21 Industrial Communication Toolbox Examples

21-62

yyyy-mm-dd HH:MM:SS.FFF

Reset the display format to the original value.

opc.setDateDisplayFormat(origFormat);

Visualize OPC UA Data

Visualize OPC UA Data using the plot and stairs functions on the data object.

axH1 = subplot(2,1,1);
plot(dataSample);
title('Plot of sample data');
axH2 = subplot(2,1,2);
stairs(dataSample);
title('Stairstep plot of sample data');
legend('Location', 'NorthWest')

Resample OPC UA Data

The data in the dataSample set has different timestamps.

arrayHasSameTimestamp(dataSample)

ans =

 Visualize and Preprocess OPC UA Data

21-63

 0

Attempt to convert the data to a double array. The conversion will fail.

try
 vals = double(dataSample);
catch exc
 disp(exc.message)
end

Conversion to double failed. All elements of the OPC Data object must have the same time stamp.
Consider using 'TSUNION', 'TSINTERSECT' or 'RESAMPLE' on the Data object.

The intersection of the data timestamps results in a smaller data set containing the common
timestamps from all elements.

dataIntersect = tsintersect(dataSample)

dataIntersect =

1-by-3 OPC UA Data object array:

 Timestamp Double Float Int32
 ----------------------- -------------------------- -------------------------- ---------------------------
 2015-04-22 09:00:40.000 40.000000 [Bad (Raw)] 30.000000 [Good (Raw)] 30 [Good (Raw)]
 2015-04-22 09:01:30.000 90.000000 [Good (Raw)] 90.000000 [Good (Raw)] 90 [Good (Raw)]

Convert the data object into a double array.

vals = double(dataIntersect)

vals =

 40 30 30
 90 90 90

Use tsunion to return the union of time series in a Data object. New values are interpolated using
the method supplied (or linear interpolation if no method is supplied). The quality is set to
"Interpolated" for those new values.

dataUnion = tsunion(dataSample)

dataUnion =

1-by-3 OPC UA Data object array:

 Timestamp Double Float Int32
 ----------------------- -- ----------------------------------- ------------------------------------
 2015-04-22 03:00:02.000 2.000000 [Uncertain:Subnormal (Interpolated)] 10.000000 [Good (Raw)] 10 [Good (Raw)]
 2015-04-22 03:00:10.000 10.000000 [Good (Raw)] 13.478261 [Good (Interpolated)] 13 [Good (Interpolated)]
 2015-04-22 03:00:20.000 20.000000 [Good (Raw)] 17.826086 [Good (Interpolated)] 18 [Good (Interpolated)]
 2015-04-22 03:00:25.000 25.000000 [Good (Interpolated)] 20.000000 [Good (Raw)] 20 [Good (Raw)]

21 Industrial Communication Toolbox Examples

21-64

 2015-04-22 03:00:28.000 28.000000 [Good (Interpolated)] 25.000000 [Good (Raw)] 25 [Good (Raw)]
 2015-04-22 03:00:30.000 30.000000 [Good (Raw)] 25.833334 [Good (Interpolated)] 26 [Good (Interpolated)]
 2015-04-22 03:00:40.000 40.000000 [Bad (Raw)] 30.000000 [Good (Raw)] 30 [Good (Raw)]
 2015-04-22 03:00:42.000 42.000000 [Good (Interpolated)] 0.000000 [Bad (Raw)] 0 [Bad (Raw)]
 2015-04-22 03:00:48.000 48.000000 [Good (Interpolated)] 4.000000 [Good (Raw)] 40 [Good (Raw)]
 2015-04-22 03:00:50.000 50.000000 [Good (Raw)] 27.000000 [Good (Interpolated)] 45 [Good (Interpolated)]
 2015-04-22 03:00:52.000 52.000000 [Good (Interpolated)] 50.000000 [Good (Raw)] 50 [Good (Raw)]
 2015-04-22 03:01:00.000 60.000000 [Good (Raw)] 54.000000 [Good (Interpolated)] 54 [Good (Interpolated)]
 2015-04-22 03:01:10.000 70.000000 [Uncertain (Raw)] 59.000000 [Good (Interpolated)] 59 [Good (Interpolated)]
 2015-04-22 03:01:12.000 72.000000 [Good (Interpolated)] 60.000000 [Good (Raw)] 60 [Good (Raw)]
 2015-04-22 03:01:17.000 77.000000 [Good (Interpolated)] 70.000000 [Uncertain (Raw)] 70 [Uncertain (Raw)]
 2015-04-22 03:01:20.000 80.000000 [Good (Raw)] 70.000000 [Good (Interpolated)] 70 [Good (Interpolated)]
 2015-04-22 03:01:23.000 83.000000 [Good (Interpolated)] 70.000000 [Good (Raw)] 70 [Good (Raw)]
 2015-04-22 03:01:26.000 86.000000 [Good (Interpolated)] 80.000000 [Good (Raw)] 80 [Good (Raw)]
 2015-04-22 03:01:30.000 90.000000 [Good (Raw)] 90.000000 [Good (Raw)] 90 [Good (Raw)]

Plot the data with markers to show how the methods work.

subplot(2,1,1);
plot(dataSample, 'Marker','.');
hold all
plot(dataIntersect, 'Marker','o', 'LineStyle','none');
title('Intersection of time series in Data object');
subplot(2,1,2);
plot(dataSample, 'Marker','.');
hold all
plot(dataUnion, 'Marker','o', 'LineStyle','--');
title('Union of time series in Data object');

 Visualize and Preprocess OPC UA Data

21-65

Resample the small data set at specified time steps.

newTS = dataSample(1).Timestamp(1):seconds(5):dataSample(1).Timestamp(end);
dataResampled = resample(dataSample,newTS)
figure;
plot(dataSample);
hold all
plot(dataResampled, 'Marker','x', 'Linestyle','none');

dataResampled =

1-by-3 OPC UA Data object array:

 Timestamp Double Float Int32
 ----------------------- ----------------------------------- ----------------------------------- ------------------------------------
 2015-04-22 03:00:10.000 10.000000 [Good (Raw)] 13.478261 [Good (Interpolated)] 13 [Good (Interpolated)]
 2015-04-22 03:00:15.000 15.000000 [Good (Interpolated)] 15.652174 [Good (Interpolated)] 16 [Good (Interpolated)]
 2015-04-22 03:00:20.000 20.000000 [Good (Raw)] 17.826086 [Good (Interpolated)] 18 [Good (Interpolated)]
 2015-04-22 03:00:25.000 25.000000 [Good (Interpolated)] 20.000000 [Good (Raw)] 20 [Good (Raw)]
 2015-04-22 03:00:30.000 30.000000 [Good (Raw)] 25.833334 [Good (Interpolated)] 26 [Good (Interpolated)]
 2015-04-22 03:00:35.000 35.000000 [Good (Interpolated)] 27.916666 [Good (Interpolated)] 28 [Good (Interpolated)]
 2015-04-22 03:00:40.000 40.000000 [Bad (Raw)] 30.000000 [Good (Raw)] 30 [Good (Raw)]
 2015-04-22 03:00:45.000 45.000000 [Good (Interpolated)] 2.000000 [Good (Interpolated)] 20 [Good (Interpolated)]
 2015-04-22 03:00:50.000 50.000000 [Good (Raw)] 27.000000 [Good (Interpolated)] 45 [Good (Interpolated)]
 2015-04-22 03:00:55.000 55.000000 [Good (Interpolated)] 51.500000 [Good (Interpolated)] 52 [Good (Interpolated)]
 2015-04-22 03:01:00.000 60.000000 [Good (Raw)] 54.000000 [Good (Interpolated)] 54 [Good (Interpolated)]
 2015-04-22 03:01:05.000 65.000000 [Good (Interpolated)] 56.500000 [Good (Interpolated)] 57 [Good (Interpolated)]

21 Industrial Communication Toolbox Examples

21-66

 2015-04-22 03:01:10.000 70.000000 [Uncertain (Raw)] 59.000000 [Good (Interpolated)] 59 [Good (Interpolated)]
 2015-04-22 03:01:15.000 75.000000 [Good (Interpolated)] 66.000000 [Good (Interpolated)] 66 [Good (Interpolated)]
 2015-04-22 03:01:20.000 80.000000 [Good (Raw)] 70.000000 [Good (Interpolated)] 70 [Good (Interpolated)]
 2015-04-22 03:01:25.000 85.000000 [Good (Interpolated)] 76.666664 [Good (Interpolated)] 77 [Good (Interpolated)]
 2015-04-22 03:01:30.000 90.000000 [Good (Raw)] 90.000000 [Good (Raw)] 90 [Good (Raw)]

Filter Data by Quality

Find only the Good data from the second element of resampled data set

resampledGood = filterByQuality(dataResampled(2), 'good')

resampledGood =

1-by-1 OPC UA Data object array:

 Timestamp Float
 ----------------------- -----------------------------------
 2015-04-22 03:00:10.000 13.478261 [Good (Interpolated)]
 2015-04-22 03:00:15.000 15.652174 [Good (Interpolated)]
 2015-04-22 03:00:20.000 17.826086 [Good (Interpolated)]
 2015-04-22 03:00:25.000 20.000000 [Good (Raw)]
 2015-04-22 03:00:30.000 25.833334 [Good (Interpolated)]
 2015-04-22 03:00:35.000 27.916666 [Good (Interpolated)]
 2015-04-22 03:00:40.000 30.000000 [Good (Raw)]
 2015-04-22 03:00:45.000 2.000000 [Good (Interpolated)]

 Visualize and Preprocess OPC UA Data

21-67

 2015-04-22 03:00:50.000 27.000000 [Good (Interpolated)]
 2015-04-22 03:00:55.000 51.500000 [Good (Interpolated)]
 2015-04-22 03:01:00.000 54.000000 [Good (Interpolated)]
 2015-04-22 03:01:05.000 56.500000 [Good (Interpolated)]
 2015-04-22 03:01:10.000 59.000000 [Good (Interpolated)]
 2015-04-22 03:01:15.000 66.000000 [Good (Interpolated)]
 2015-04-22 03:01:20.000 70.000000 [Good (Interpolated)]
 2015-04-22 03:01:25.000 76.666664 [Good (Interpolated)]
 2015-04-22 03:01:30.000 90.000000 [Good (Raw)]

Filter the second element of the resampled data to return only the Interpolated data. Visualize the
filtered data with the original.

resampledInterpolated = filterByQuality(dataResampled(2), 'Origin','interpolated')

figure;
plot(dataResampled(2))
hold on
plot(resampledGood, 'Marker', '+', 'Linestyle','none', 'DisplayName', 'Good');
plot(resampledInterpolated, 'Marker','x', 'Linestyle','none', 'DisplayName', 'Interpolated');
legend('Location', 'NorthWest')

resampledInterpolated =

1-by-1 OPC UA Data object array:

 Timestamp Float
 ----------------------- -----------------------------------
 2015-04-22 03:00:10.000 13.478261 [Good (Interpolated)]
 2015-04-22 03:00:15.000 15.652174 [Good (Interpolated)]
 2015-04-22 03:00:20.000 17.826086 [Good (Interpolated)]
 2015-04-22 03:00:30.000 25.833334 [Good (Interpolated)]
 2015-04-22 03:00:35.000 27.916666 [Good (Interpolated)]
 2015-04-22 03:00:45.000 2.000000 [Good (Interpolated)]
 2015-04-22 03:00:50.000 27.000000 [Good (Interpolated)]
 2015-04-22 03:00:55.000 51.500000 [Good (Interpolated)]
 2015-04-22 03:01:00.000 54.000000 [Good (Interpolated)]
 2015-04-22 03:01:05.000 56.500000 [Good (Interpolated)]
 2015-04-22 03:01:10.000 59.000000 [Good (Interpolated)]
 2015-04-22 03:01:15.000 66.000000 [Good (Interpolated)]
 2015-04-22 03:01:20.000 70.000000 [Good (Interpolated)]
 2015-04-22 03:01:25.000 76.666664 [Good (Interpolated)]

21 Industrial Communication Toolbox Examples

21-68

 Visualize and Preprocess OPC UA Data

21-69

Read and Write to an OPC Data Access Server from Simulink

This example shows you how to exchange data between Simulink and OPC Data Access servers.

PREREQUISITES:

• “Install a Simulation Server for OPC Examples” on page 21-2

Model Description

In the following model, all OPC blocks are highlighted in blue.

The OPC Config block defines the servers to use in the model, the pseudo-realtime behaviour of the
model when it is simulated, and the actions to take when OPC-specific events occur (such as a
pseudo-realtime violation, server shutdown, etc.)

The signal from the Sine Wave block is written to the OPC Server using the OPC Write block. The
same signal is read back from the server using the OPC Read block, and displayed in the Scope
together with the original Sine Wave signal. The OPC data quality is shown in the Display block.

21 Industrial Communication Toolbox Examples

21-70

Understanding the Simulation Results

The Scope shows that the Sine Wave signal is delayed by only one sample. The OPC Write block's
priority is set higher than the OPC Read block to ensure that the read operation occurs after the
write operation. This ensures only one sample delay between the write and read operation.

 Read and Write to an OPC Data Access Server from Simulink

21-71

Use OPC Data to Test a Binary Distillation Column Plant Model

This example shows how to use data from an OPC server to test composition control of a binary
distillation column model.

PREREQUISITES:

• “Install a Simulation Server for OPC Examples” on page 21-2

Model Description

The distillation column controller has been tuned using Simulink® Design Optimization™. For more
information, see distillation_demo.mdl from Simulink Design Optimization.

The OPC server provides a random signal for the set-points, and for injecting an output disturbance
on the process (see the OPC Read blocks, colored blue). The plant outputs are written back to the
OPC server using the blue OPC Write block.

21 Industrial Communication Toolbox Examples

21-72

Running Simulink Models Faster Than Real-Time

Note how in this example runs the model at 300 times real-time, using the speedup factor in the OPC
Configuration block (colored orange). The distillation column model has very slow time constants
(on the order of 20 minutes), and it is desirable to test the simulation at faster rates than real-time.
By using the speedup factor, you can simulate 400 minutes in approximately 80 seconds. This model
could be connected to an HMI or SCADA system to train operators in expected plant responses, or to
validate the SCADA system against desired performance specifications.

 Use OPC Data to Test a Binary Distillation Column Plant Model

21-73

Get Started Accessing Data from a PI Server

This example shows you how to connect to an OSIsoft™ PI Server and locate asset information stored
in its data archive. Running this example requires that an OSIsoft PI System is installed. The demo
tags used in this example were provided by OSIsoft and may be downloaded from the following
location:

https://learning.osisoft.com/asset-based-af-example-kits

The PI Server is capable of storing decades of real-time data from hundreds of assets. The MATLAB®
interface for the PI System leverages the system's Asset Framework (AF) to access time series data of
your assets.

Create Client and Connect to Server

Connect to a PI Server using the piclient function. In this example the Windows computer name is
used as the PI AF Server name. Your situation may vary depending on PI System configuration.

host = getenv("COMPUTERNAME");
client = piclient(host);

List All Tags

Create a list of all tags available on the PI Server using the tags method. Depending on your system,
this query may return a large amount of data. If you have an extensive list of tags that makes this too
slow or impractical, you may want to skip this step.

A tag is used by the PI System as an alias or shortcut to represent an asset attribute such as voltage,
current, temperature, etc. Some tag names are short, others may be long and descriptive or include a
unique ID.

allTags = tags(client)

allTags=478×1 table
 Tags

 "Flynn I.Active Power Generated.1b86ebf3-1c0a-52bd-3222-38e6660052f2"
 "Flynn I.Hydro Unit Attention Percentage.4ae999f5-f5ae-535c-3f43-fcb3775ee8a4"
 "Flynn I.Hydro Unit Condition.f3ec518f-1059-5c79-00cf-28c97d06714b"
 "Flynn II.Active Power Generated.1b86eb8e-1c0a-52bd-3222-38e6660052f2"
 "Flynn II.Hydro Unit Attention Percentage.4ae99988-f5ae-535c-3f43-fcb3775ee8a4"
 "Flynn II.Hydro Unit Condition.f3ec51f2-1059-5c79-00cf-28c97d06714b"
 "Flynn River Hydro.Actual Power Generated.1670a44f-b666-5758-3021-6f6f8a37127d"
 "Flynn River Hydro.Hydro Attention Percentage.e7b2c9f9-ef29-54be-0f3a-41a791e7bfd1"
 "Flynn River Hydro.Hydro Condition.1bf06b5f-9e31-5615-1701-19b9b333770f"
 "GU1 Generator.Analysis Generator Condition - Hours Since Last Maintenance.d7df31d2-dbb3-5ff3-346b-4102edc802cc"
 "GU1 Generator.Analysis Generator Cooling - Bearing Temperature.7c20f57e-0f25-5474-3d73-b839651b5ed7"
 "GU1 Generator.Analysis Generator Cooling - Cooling Water Output Temperature.844da429-3a04-505b-1315-ab4869963455"
 "GU1 Generator.Analysis Generator Cooling - Cooling Water Pressure.e217c9ab-825a-5e3b-1915-657727f82eea"
 "GU1 Generator.Analysis Generator Cooling - Core Temperature.204ab467-880e-5691-189c-3bc20e83484f"
 "GU1 Generator.Analysis Generator Cooling - Rotor Winding Temperature.1c7fa6fd-9eaf-5fea-30ce-b1eca9436a20"
 "GU1 Generator.Analysis Generator Lubricating - Lubricant Oil Output Temperature.d6db886f-e4fa-5c60-2552-bf41e4307e9d"
 ⋮

21 Industrial Communication Toolbox Examples

21-74

https://learning.osisoft.com/asset-based-af-example-kits

Narrow List of Tags to Specific Facility Using Wildcard

You could choose to browse the list of tags returned in the previous step to locate a particular tag and
assign it to a new variable. But it is more convenient to narrow the search using additional input
parameters in the tags method. For example, based on the list of tags returned in the previous step,
specify a prefix in your tag search to narrow the results. The following example uses a wildcard to
find all tags with the prefix "OSIDemo_Flynn I.".

tagsFlynnI = tags(client, Name = "OSIDemo_Flynn I.*")

tagsFlynnI=7×1 table
 Tags
 __

 "OSIDemo_Flynn I.Dam Gates Opening.b2156e0a-0b4d-555c-3edf-cea1339a96b7"
 "OSIDemo_Flynn I.Penstock Flow.322006e7-2097-5f17-0e4d-1be282f8c36c"
 "OSIDemo_Flynn I.Penstock Opening.d49c75c6-5ef9-57a8-0366-9d71e9b595cf"
 "OSIDemo_Flynn I.Penstock Pressure.c550b9de-f101-53be-1b5a-84e0f3c22991"
 "OSIDemo_Flynn I.Reservoir Level.1a4f7e16-c4ad-55ea-0731-ca5ba86bcaf7"
 "OSIDemo_Flynn I.Water PH.42e7dc15-656a-5aa7-181c-6adee980d38a"
 "OSIDemo_Flynn I.Water Temperature.18d94851-7252-5c87-1fb3-d769fb949f15"

Use Multiple Wildcards to Narrow List of Tags

You may also use multiple wildcards to narrow a list of tags. Notice the example below uses a
wildcard before and after "Demo". This returns all tags containing the string "Demo". Notice the
results now include tags containing both "Flynn I" and "Flynn II".

tagsDemo = tags(client, Name = "*Demo*")

tagsDemo=194×1 table
 Tags
 __

 "OSIDemo_Flynn I.Dam Gates Opening.b2156e0a-0b4d-555c-3edf-cea1339a96b7"
 "OSIDemo_Flynn I.Penstock Flow.322006e7-2097-5f17-0e4d-1be282f8c36c"
 "OSIDemo_Flynn I.Penstock Opening.d49c75c6-5ef9-57a8-0366-9d71e9b595cf"
 "OSIDemo_Flynn I.Penstock Pressure.c550b9de-f101-53be-1b5a-84e0f3c22991"
 "OSIDemo_Flynn I.Reservoir Level.1a4f7e16-c4ad-55ea-0731-ca5ba86bcaf7"
 "OSIDemo_Flynn I.Water PH.42e7dc15-656a-5aa7-181c-6adee980d38a"
 "OSIDemo_Flynn I.Water Temperature.18d94851-7252-5c87-1fb3-d769fb949f15"
 "OSIDemo_Flynn II.Dam Gates Opening.b2156e77-0b4d-555c-3edf-cea1339a96b7"
 "OSIDemo_Flynn II.Penstock Flow.3220069a-2097-5f17-0e4d-1be282f8c36c"
 "OSIDemo_Flynn II.Penstock Opening.d49c75bb-5ef9-57a8-0366-9d71e9b595cf"
 "OSIDemo_Flynn II.Penstock Pressure.c550b9a3-f101-53be-1b5a-84e0f3c22991"
 "OSIDemo_Flynn II.Reservoir Level.1a4f7e6b-c4ad-55ea-0731-ca5ba86bcaf7"
 "OSIDemo_Flynn II.Water PH.42e7dc68-656a-5aa7-181c-6adee980d38a"
 "OSIDemo_Flynn II.Water Temperature.18d9482c-7252-5c87-1fb3-d769fb949f15"
 "OSIDemo_GU1 Generator.Active Power.4db83f0a-ff87-5c67-385a-83cfe3ac560d"
 "OSIDemo_GU1 Generator.Axial Vibration.373a6144-442d-5e69-1079-5986bf866fa1"
 ⋮

Narrow List of Tags Using MATLAB Pattern Matching

Narrow the list of tags using the contains function. This example makes use of the tagsDemo list
from a previous step, returning all tags containing the string "Water".

 Get Started Accessing Data from a PI Server

21-75

tagsWater = tagsDemo(contains(tagsDemo.Tags,"Water"),:)

tagsWater=48×1 table
 Tags

 "OSIDemo_Flynn I.Water PH.42e7dc15-656a-5aa7-181c-6adee980d38a"
 "OSIDemo_Flynn I.Water Temperature.18d94851-7252-5c87-1fb3-d769fb949f15"
 "OSIDemo_Flynn II.Water PH.42e7dc68-656a-5aa7-181c-6adee980d38a"
 "OSIDemo_Flynn II.Water Temperature.18d9482c-7252-5c87-1fb3-d769fb949f15"
 "OSIDemo_GU1 Generator.Cooling Water Intake Temperature.2b0243be-4a97-5a48-1337-0e0b242c4795"
 "OSIDemo_GU1 Generator.Cooling Water Output Temperature.7d1a79de-1957-5efc-1d55-aa5fcfccf36a"
 "OSIDemo_GU1 Generator.Cooling Water Pressure.0c723cab-80c6-5630-13bf-38fdd7092768"
 "OSIDemo_GU1 Generator.Water in Oil.801b9776-f2fd-5a9b-2725-d2e66ad4284f"
 "OSIDemo_GU1 Turbine.Cooling Water Intake Temperature.f987f83c-7a17-5027-1492-0482f0ae04b9"
 "OSIDemo_GU1 Turbine.Cooling Water Output Temperature.62d8c804-2b82-53bc-09f1-660ffa00aa70"
 "OSIDemo_GU1 Turbine.Cooling Water Pressure Output.7c04ebc3-ae18-5207-0690-514252308c5b"
 "OSIDemo_GU1 Turbine.Water Flow.cf5b84c3-af11-5637-2317-f518e59b0c9f"
 "OSIDemo_GU1 Turbine.Water in Oil.562f5784-a814-5b11-3dd7-44b9735068ca"
 "OSIDemo_GU1 Turbine.Water pH Intake.2f31dbfe-6f9a-5005-083c-db8531de4d07"
 "OSIDemo_GU1 Turbine.Water pH Output.59993b66-79da-591e-1d17-ea5fad61a12b"
 "OSIDemo_GU2 Generator.Cooling Water Intake Temperature.2b0243d3-4a97-5a48-1337-0e0b242c4795"
 ⋮

Identify Tag Based on Its Position in Existing Tag List

When narrowing your tag search, you can quickly single out a particular tag from a tag list by
specifying its position in the list. This is often more convenient than identifying a tag by its name,
which can sometimes be lengthy. For example, notice you can identify "OSIDemo_Flynn I.Water
Temperature..." in the tagsWater list of the previous example by indicating the second entry in
tagsWater.

tagFlynn1Water = tags(client, Name = tagsWater{2,:})

tagFlynn1Water=table
 Tags
 __

 "OSIDemo_Flynn I.Water Temperature.18d94851-7252-5c87-1fb3-d769fb949f15"

Cleanup

When you are finished working with the PI Server, disconnect and remove the client by clearing its
variable from the workspace.

clear client;

21 Industrial Communication Toolbox Examples

21-76

Read Data from a PI Server

This example shows you how to read data from an OSIsoft™ PI Server using the read method. The
read capability of Industrial Communication Toolbox™ for PI provides a variety of options and flexible
ways to get the data from your server. Running this example requires that an OSIsoft PI System is
installed. The demo tags used in this example were provided by OSIsoft and may be downloaded from
the following location:

https://learning.osisoft.com/asset-based-af-example-kits

The PI Server is capable of storing decades of real-time data from hundreds of assets. The MATLAB®
interface for the PI System leverages the system's Asset Framework (AF) to access time series data of
your assets.

Create Client/Server Connection and Retrieve Required Tags

Connect to a PI Server using the piclient function. In this example the Windows computer name is
used as the PI AF Server name. Your situation may vary depending on PI System configuration.

host = getenv("COMPUTERNAME");
client = piclient(host);

Request a list of tags related to the asset of interest. For more detailed information see “Get Started
Accessing Data from a PI Server” on page 21-74.

tagsTurbine = tags(client, Name = "OSIDemo_GU4 Turbine*")

tagsTurbine=17×1 table
 Tags

 "OSIDemo_GU4 Turbine.Bearing Temperature.c73204fa-e8f2-5513-1bc9-b5f097831d16"
 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7"
 "OSIDemo_GU4 Turbine.Cooling Water Intake Temperature.f987e786-7a17-5027-1492-0482f0ae04b9"
 "OSIDemo_GU4 Turbine.Cooling Water Output Temperature.62d8d7be-2b82-53bc-09f1-660ffa00aa70"
 "OSIDemo_GU4 Turbine.Cooling Water Pressure Output.7c04f479-ae18-5207-0690-514252308c5b"
 "OSIDemo_GU4 Turbine.Hours Since Last Maintenance.ec8ae125-0ae5-5d45-1de6-0643ffac4983"
 "OSIDemo_GU4 Turbine.Lubricant Oil Intake Temperature.7fc3f299-b6ee-5e2e-3e7b-ca4ca59a9d9c"
 "OSIDemo_GU4 Turbine.Lubricant Oil Output Temperature.03c2ec47-7719-5f48-32b5-6c961d1a7912"
 "OSIDemo_GU4 Turbine.Lubricant Oil Pressure Output.9dd81865-26b3-57fb-0791-bf7a3cfea158"
 "OSIDemo_GU4 Turbine.Oil Level.201c4312-8852-50be-1d8b-297c216712ec"
 "OSIDemo_GU4 Turbine.Total Hours Running.4438ad34-9e54-5075-1c76-19e3ac3fb728"
 "OSIDemo_GU4 Turbine.Turbine Vibration.e4c9f243-d5c9-5f5c-3b82-ed8076592ff9"
 "OSIDemo_GU4 Turbine.Vane Angle.3ddc1860-a9cc-54ee-2d41-595eb92fc677"
 "OSIDemo_GU4 Turbine.Water Flow.cf5b9b79-af11-5637-2317-f518e59b0c9f"
 "OSIDemo_GU4 Turbine.Water in Oil.562f483e-a814-5b11-3dd7-44b9735068ca"
 "OSIDemo_GU4 Turbine.Water pH Intake.2f31c444-6f9a-5005-083c-db8531de4d07"
 ⋮

Read Latest Value of Tag

Read the most recent recorded value of a tag using the read method.

vibrationLatestTT = read(client, tagsTurbine.Tags(2))

 Read Data from a PI Server

21-77

https://learning.osisoft.com/asset-based-af-example-kits

vibrationLatestTT=1×3 timetable
 Time Tag Value Status
 _________________________ __ _____ ______

 21-December-2021 15:40:00 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.8 Good

Read Values over Period of Time

To read values over a period of time, you first define a period. For example, to read values of a tag
over the last two days, use the DateRange Name-Value pair to specify a starting datetime and
ending datetime. Set the start date to two days ago.

startDate = datetime("now") - days(2);

Set the end date to now.

endDate = datetime("now");

Use these to specify the starting datetime and ending datetime in your request.

vibrationTwoDaysTT = read(client, tagsTurbine.Tags(2), DateRange = [startDate, endDate])

vibrationTwoDaysTT=559×3 timetable
 Time Tag Value Status
 _________________________ __ _____ ______

 19-December-2021 10:45:00 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.83 Good
 19-December-2021 10:50:00 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.86 Good
 19-December-2021 10:55:00 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 1.03 Good
 19-December-2021 11:00:00 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.85 Good
 19-December-2021 11:05:00 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.8 Good
 19-December-2021 11:10:00 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.88 Good
 19-December-2021 11:15:00 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.89 Good
 19-December-2021 11:20:00 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.89 Good
 19-December-2021 11:25:00 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.79 Good
 19-December-2021 11:30:00 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.88 Good
 19-December-2021 11:35:00 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.84 Good
 19-December-2021 11:40:00 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.7 Good
 19-December-2021 11:45:00 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 1.04 Good
 19-December-2021 11:50:00 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.83 Good
 19-December-2021 11:55:00 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.82 Good
 19-December-2021 12:00:00 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.74 Good
 ⋮

Read All Recorded Values of a Tag

To read all recorded values of a tag, it is useful to know when data recording began. You may use the
Earliest Name-Value pair to determine this.

vibrationEarliestTT = read(client, tagsTurbine.Tags(2), Earliest = true)

vibrationEarliestTT=1×3 timetable
 Time Tag Value Status
 _________________________ __ _____ ______

 04-November-2021 20:25:43 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" NaN Bad

21 Industrial Communication Toolbox Examples

21-78

Notice the value of this tag at the earliest recorded time is a NaN. This is often the case for the first
data point in a series as the PI Server indicates a status of Bad for this data point upon creation. You
may take actions to exclude this from your data set if desired.

This earliest data point identifies the time of the first recorded value. You may now use this
information to establish a starting datetime for your request.

startDate = datetime(vibrationEarliestTT.Time(1));

Set the ending datetime to now.

endDate = datetime("now", TimeZone = "local");

Depending on your system, this query may return a large amount of data. If you have an extensive
history of data that makes this too slow or impractical, you may want to skip this step.

vibrationAllTT = read(client, tagsTurbine.Tags(2), DateRange = [startDate, endDate])

vibrationAllTT=13171×3 timetable
 Time Tag Value Status
 _________________________ __ _____ ______

 04-November-2021 20:25:43 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" NaN Bad
 04-November-2021 20:30:00 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.72 Good
 04-November-2021 20:35:00 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.73 Good
 04-November-2021 20:40:00 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.86 Good
 04-November-2021 20:45:00 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.75 Good
 04-November-2021 20:50:00 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.73 Good
 04-November-2021 20:55:00 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.85 Good
 04-November-2021 21:00:00 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.83 Good
 04-November-2021 21:05:00 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.97 Good
 04-November-2021 21:10:00 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.77 Good
 04-November-2021 21:15:00 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.72 Good
 04-November-2021 21:20:00 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 1.02 Good
 04-November-2021 21:25:00 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.83 Good
 04-November-2021 21:30:00 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.89 Good
 04-November-2021 21:35:00 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.88 Good
 04-November-2021 21:40:00 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.95 Good
 ⋮

Reduce Dataset Using Linear Interpolation Provided by PI Server

Notice the large number of datapoints in the result of the previous step. You may reduce the dataset
by using the Interval Name-Value pair. For example the following read requests data with an
interval of 30 minutes. The Interval Name-Value pair requests the PI Server to perform linear
interpolation on recorded values and provide results at the specified interval.

vibrationInterpolatedTT = read(client, tagsTurbine.Tags(2), DateRange = [startDate, endDate], Interval = minutes(30))

vibrationInterpolatedTT=2247×3 timetable
 Time Tag Value Status
 _________________________ __ _______ ______

 04-November-2021 20:25:43 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" NaN Bad
 04-November-2021 20:55:43 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.84713 Good
 04-November-2021 21:25:43 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.8386 Good
 04-November-2021 21:55:43 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.80423 Good

 Read Data from a PI Server

21-79

 04-November-2021 22:25:43 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.86857 Good
 04-November-2021 22:55:43 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.80717 Good
 04-November-2021 23:25:43 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.71863 Good
 04-November-2021 23:55:43 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.96133 Good
 05-November-2021 00:25:43 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.8542 Good
 05-November-2021 00:55:43 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.8 Good
 05-November-2021 01:25:43 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.74573 Good
 05-November-2021 01:55:43 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.72857 Good
 05-November-2021 02:25:43 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.79997 Good
 05-November-2021 02:55:43 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.8385 Good
 05-November-2021 03:25:43 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.79857 Good
 05-November-2021 03:55:43 "OSIDemo_GU4 Turbine.Bearing Vibration.64a3ce99-f31e-593c-3e29-595f32095ce7" 0.74147 Good
 ⋮

Cleanup

When you are finished working with the PI Server, disconnect and remove the client by clearing its
variable from the workspace.

clear client;

21 Industrial Communication Toolbox Examples

21-80

Process PI Data Using Common MATLAB Operations

This example shows you how to process PI data using common MATLAB timetable operations.
Running this example requires that an OSIsoft™ PI System is installed. The demo tags used in this
example were provided by OSIsoft and may be downloaded from the following location:

https://learning.osisoft.com/asset-based-af-example-kits

The PI Server is capable of storing decades of real-time data from hundreds of assets. The MATLAB®
interface for the PI System leverages the system's Asset Framework (AF) to access time series data of
your assets.

Create Client/Server Connection and Retrieve Required Tags

Connect to a PI Server using the piclient function. In this example the Windows computer name is
used as the PI AF Server name. Your situation may vary depending on PI System configuration.

host = getenv("COMPUTERNAME");
client = piclient(host);

Request a list of tags related to the asset of interest. For more detailed information see “Get Started
Accessing Data from a PI Server” on page 21-74.

tagsGenerator = tags(client, Name = "OSIDemo_GU1 Generator*")

tagsGenerator=28×1 table
 Tags

 "OSIDemo_GU1 Generator.Active Power.4db83f0a-ff87-5c67-385a-83cfe3ac560d"
 "OSIDemo_GU1 Generator.Axial Vibration.373a6144-442d-5e69-1079-5986bf866fa1"
 "OSIDemo_GU1 Generator.Bearing Temperature.3cfb845c-000c-5cf2-2ca0-b47dfdcfb4d7"
 "OSIDemo_GU1 Generator.Bearing Vibration.ac4f121c-0633-5a0d-3e26-e8d6a6249515"
 "OSIDemo_GU1 Generator.Cooling Water Intake Temperature.2b0243be-4a97-5a48-1337-0e0b242c4795"
 "OSIDemo_GU1 Generator.Cooling Water Output Temperature.7d1a79de-1957-5efc-1d55-aa5fcfccf36a"
 "OSIDemo_GU1 Generator.Cooling Water Pressure.0c723cab-80c6-5630-13bf-38fdd7092768"
 "OSIDemo_GU1 Generator.Core Temperature.79a1a7b5-5425-51ba-0bd6-ea1d6fbc4b86"
 "OSIDemo_GU1 Generator.Current Phase A.07815f38-c5b4-5abc-3d7c-2b0d4cd303ac"
 "OSIDemo_GU1 Generator.Current Phase B.7e11e986-d6e3-5f51-241a-23cc597bde31"
 "OSIDemo_GU1 Generator.Current Phase C.02c2ac50-14f7-5a5a-2e97-8b7d24851468"
 "OSIDemo_GU1 Generator.Frequency.8886141f-470a-514e-22d9-ef9e6aceaf95"
 "OSIDemo_GU1 Generator.Hours Since Last Maintenance.cb867a54-053b-5616-1a4a-dfa68f6b454c"
 "OSIDemo_GU1 Generator.Line Voltage AB.373eb947-c651-5aef-1948-a312f1aa02e9"
 "OSIDemo_GU1 Generator.Line Voltage AC.a809d1f1-c08f-54f9-0915-2a1f0096c464"
 "OSIDemo_GU1 Generator.Line Voltage BC.90cc345e-520f-5284-187b-d2c1f98bf536"
 ⋮

Find All Tags from List Related to Voltage

Refine the list of tags using the contains function. This groups together all tags related to line
voltages for use later in the example.

tagsVoltage = tagsGenerator(contains(tagsGenerator.Tags,"Voltage"),:)

tagsVoltage=3×1 table
 Tags

 Process PI Data Using Common MATLAB Operations

21-81

https://learning.osisoft.com/asset-based-af-example-kits

 __

 "OSIDemo_GU1 Generator.Line Voltage AB.373eb947-c651-5aef-1948-a312f1aa02e9"
 "OSIDemo_GU1 Generator.Line Voltage AC.a809d1f1-c08f-54f9-0915-2a1f0096c464"
 "OSIDemo_GU1 Generator.Line Voltage BC.90cc345e-520f-5284-187b-d2c1f98bf536"

Read Latest Value of Multiple Tags

Read the latest value multiple tags using the read method and specifying a range of tags.

voltageLatestTT = read(client, tagsVoltage.Tags(1:3))

voltageLatestTT=3×3 timetable
 Time Tag Value Status
 _________________________ __ _____ ______

 21-December-2021 15:45:00 "OSIDemo_GU1 Generator.Line Voltage AB.373eb947-c651-5aef-1948-a312f1aa02e9" 3.31 Good
 21-December-2021 15:45:00 "OSIDemo_GU1 Generator.Line Voltage AC.a809d1f1-c08f-54f9-0915-2a1f0096c464" 3.32 Good
 21-December-2021 15:45:00 "OSIDemo_GU1 Generator.Line Voltage BC.90cc345e-520f-5284-187b-d2c1f98bf536" 3.29 Good

Read All Recorded Values of Multiple Tags

To read all recorded values of a tag, it is useful to know when data recording began. You may use the
Earliest Name-Value pair to determine this. Notice that all three of the tags from tagsVoltage
are passed to the read method.

voltageEarliestTT = read(client, tagsVoltage.Tags(1:3), Earliest = true)

voltageEarliestTT=3×3 timetable
 Time Tag Value Status
 _________________________ __ _____ ______

 04-November-2021 20:25:12 "OSIDemo_GU1 Generator.Line Voltage AB.373eb947-c651-5aef-1948-a312f1aa02e9" NaN Bad
 04-November-2021 20:25:12 "OSIDemo_GU1 Generator.Line Voltage AC.a809d1f1-c08f-54f9-0915-2a1f0096c464" NaN Bad
 04-November-2021 20:25:12 "OSIDemo_GU1 Generator.Line Voltage BC.90cc345e-520f-5284-187b-d2c1f98bf536" NaN Bad

Notice the value of this tag at the earliest recorded time is a NaN. This is often the case for the first
data point in a series as the PI Server indicates a status of Bad for this data point upon creation. You
may take actions to exclude this from your data set if desired.

This earliest data point identifies the time of the first recorded value. You may now use this
information to establish a starting datetime for your request..

startDate = datetime(voltageEarliestTT.Time(1));
endDate = datetime("now", TimeZone = "local");

Depending on your system, this query may return a large amount of data. If you have an extensive
history of data that makes this too slow or impractical, you may want to skip this step.

voltageAllTT = read(client, tagsVoltage.Tags(1:3), DateRange = [startDate, endDate])

voltageAllTT=29815×3 timetable
 Time Tag Value Status
 _________________________ __ _____ ______

21 Industrial Communication Toolbox Examples

21-82

 04-November-2021 20:25:12 "OSIDemo_GU1 Generator.Line Voltage AB.373eb947-c651-5aef-1948-a312f1aa02e9" NaN Bad
 04-November-2021 20:25:12 "OSIDemo_GU1 Generator.Line Voltage AC.a809d1f1-c08f-54f9-0915-2a1f0096c464" NaN Bad
 04-November-2021 20:25:12 "OSIDemo_GU1 Generator.Line Voltage BC.90cc345e-520f-5284-187b-d2c1f98bf536" NaN Bad
 04-November-2021 20:30:00 "OSIDemo_GU1 Generator.Line Voltage AB.373eb947-c651-5aef-1948-a312f1aa02e9" 3.28 Good
 04-November-2021 20:30:00 "OSIDemo_GU1 Generator.Line Voltage AC.a809d1f1-c08f-54f9-0915-2a1f0096c464" 3.32 Good
 04-November-2021 20:30:00 "OSIDemo_GU1 Generator.Line Voltage BC.90cc345e-520f-5284-187b-d2c1f98bf536" 3.32 Good
 04-November-2021 20:35:00 "OSIDemo_GU1 Generator.Line Voltage AC.a809d1f1-c08f-54f9-0915-2a1f0096c464" 3.3 Good
 04-November-2021 20:40:00 "OSIDemo_GU1 Generator.Line Voltage AB.373eb947-c651-5aef-1948-a312f1aa02e9" 3.31 Good
 04-November-2021 20:40:00 "OSIDemo_GU1 Generator.Line Voltage AC.a809d1f1-c08f-54f9-0915-2a1f0096c464" 3.3 Good
 04-November-2021 20:45:00 "OSIDemo_GU1 Generator.Line Voltage AB.373eb947-c651-5aef-1948-a312f1aa02e9" 3.31 Good
 04-November-2021 20:45:00 "OSIDemo_GU1 Generator.Line Voltage AC.a809d1f1-c08f-54f9-0915-2a1f0096c464" 3.28 Good
 04-November-2021 20:50:00 "OSIDemo_GU1 Generator.Line Voltage AB.373eb947-c651-5aef-1948-a312f1aa02e9" 3.29 Good
 04-November-2021 20:50:00 "OSIDemo_GU1 Generator.Line Voltage AC.a809d1f1-c08f-54f9-0915-2a1f0096c464" 3.28 Good
 04-November-2021 20:50:00 "OSIDemo_GU1 Generator.Line Voltage BC.90cc345e-520f-5284-187b-d2c1f98bf536" 3.32 Good
 04-November-2021 20:55:00 "OSIDemo_GU1 Generator.Line Voltage AC.a809d1f1-c08f-54f9-0915-2a1f0096c464" 3.32 Good
 04-November-2021 20:55:00 "OSIDemo_GU1 Generator.Line Voltage BC.90cc345e-520f-5284-187b-d2c1f98bf536" 3.3 Good
 ⋮

Reduce Dataset Using Linear Interpolation Provided by PI Server

Notice the large number of datapoints in the result of the previous step. You may reduce the dataset
by using the Interval Name-Value pair. For example the following read requests data with an
interval of 4 hours. The Interval Name-Value pair requests the PI Server to perform linear
interpolation on recorded values and provide results at the specified interval.

voltageInterpolatedTT = read(client, tagsVoltage.Tags(1:3), DateRange = [startDate, endDate], Interval = hours(4))

voltageInterpolatedTT=843×3 timetable
 Time Tag Value Status
 _________________________ __ ______ ______

 04-November-2021 20:25:12 "OSIDemo_GU1 Generator.Line Voltage AB.373eb947-c651-5aef-1948-a312f1aa02e9" NaN Bad
 04-November-2021 20:25:12 "OSIDemo_GU1 Generator.Line Voltage AC.a809d1f1-c08f-54f9-0915-2a1f0096c464" NaN Bad
 04-November-2021 20:25:12 "OSIDemo_GU1 Generator.Line Voltage BC.90cc345e-520f-5284-187b-d2c1f98bf536" NaN Bad
 05-November-2021 00:25:12 "OSIDemo_GU1 Generator.Line Voltage AB.373eb947-c651-5aef-1948-a312f1aa02e9" 3.2908 Good
 05-November-2021 00:25:12 "OSIDemo_GU1 Generator.Line Voltage AC.a809d1f1-c08f-54f9-0915-2a1f0096c464" 3.3053 Good
 05-November-2021 00:25:12 "OSIDemo_GU1 Generator.Line Voltage BC.90cc345e-520f-5284-187b-d2c1f98bf536" 3.32 Good
 05-November-2021 04:25:12 "OSIDemo_GU1 Generator.Line Voltage AB.373eb947-c651-5aef-1948-a312f1aa02e9" 3.2805 Good
 05-November-2021 04:25:12 "OSIDemo_GU1 Generator.Line Voltage AC.a809d1f1-c08f-54f9-0915-2a1f0096c464" 3.2808 Good
 05-November-2021 04:25:12 "OSIDemo_GU1 Generator.Line Voltage BC.90cc345e-520f-5284-187b-d2c1f98bf536" 3.32 Good
 05-November-2021 08:25:12 "OSIDemo_GU1 Generator.Line Voltage AB.373eb947-c651-5aef-1948-a312f1aa02e9" 3.3102 Good
 05-November-2021 08:25:12 "OSIDemo_GU1 Generator.Line Voltage AC.a809d1f1-c08f-54f9-0915-2a1f0096c464" 3.3194 Good
 05-November-2021 08:25:12 "OSIDemo_GU1 Generator.Line Voltage BC.90cc345e-520f-5284-187b-d2c1f98bf536" 3.2912 Good
 05-November-2021 12:25:12 "OSIDemo_GU1 Generator.Line Voltage AB.373eb947-c651-5aef-1948-a312f1aa02e9" 3.3047 Good
 05-November-2021 12:25:12 "OSIDemo_GU1 Generator.Line Voltage AC.a809d1f1-c08f-54f9-0915-2a1f0096c464" 3.3092 Good
 05-November-2021 12:25:12 "OSIDemo_GU1 Generator.Line Voltage BC.90cc345e-520f-5284-187b-d2c1f98bf536" 3.3196 Good
 05-November-2021 16:25:12 "OSIDemo_GU1 Generator.Line Voltage AB.373eb947-c651-5aef-1948-a312f1aa02e9" 3.2832 Good
 ⋮

Unstack Values from One Timetable Variable to Multiple Variables

Unstack the timetable to distribute each line voltage as a timetable variable.

uVoltageTT = unstack(voltageInterpolatedTT,"Value","Tag",...
 "AggregationFunction",@(x)x(~isempty(x)),"VariableNamingRule","preserve")

 Process PI Data Using Common MATLAB Operations

21-83

uVoltageTT=281×3 timetable
 Time OSIDemo_GU1 Generator.Line Voltage AB.373eb947-c651-5aef-1948-a OSIDemo_GU1 Generator.Line Voltage AC.a809d1f1-c08f-54f9-0915-2 OSIDemo_GU1 Generator.Line Voltage BC.90cc345e-520f-5284-187b-d
 _________________________ ___ ___ ___

 04-November-2021 20:25:12 NaN NaN NaN
 05-November-2021 00:25:12 3.2908 3.3053 3.32
 05-November-2021 04:25:12 3.2805 3.2808 3.32
 05-November-2021 08:25:12 3.3102 3.3194 3.2912
 05-November-2021 12:25:12 3.3047 3.3092 3.3196
 05-November-2021 16:25:12 3.2832 3.3094 3.2992
 05-November-2021 20:25:12 3.2806 3.3188 3.3096
 06-November-2021 00:25:12 3.3188 3.32 3.3184
 06-November-2021 04:25:12 3.2808 3.2812 3.3088
 06-November-2021 08:25:12 3.2896 3.2906 3.3198
 06-November-2021 12:25:12 3.3088 3.3192 3.32
 06-November-2021 16:25:12 3.3184 3.2806 3.3184
 06-November-2021 20:25:12 3.3 3.3188 3.3004
 07-November-2021 00:25:12 3.3008 3.2992 3.3097
 07-November-2021 04:25:12 3.3188 3.2908 3.2816
 07-November-2021 08:25:12 3.3104 3.3196 3.2992
 ⋮

Fill Missing Values

Notice the timetable in the previous step contains some NaN values. This happens when datapoints of
a timetable are not all sampled at the same interval. Use the fillmissing function to correct this
using linear interpolation.

[cVoltageTT,~] = fillmissing(uVoltageTT,"linear")

cVoltageTT=281×3 timetable
 Time OSIDemo_GU1 Generator.Line Voltage AB.373eb947-c651-5aef-1948-a OSIDemo_GU1 Generator.Line Voltage AC.a809d1f1-c08f-54f9-0915-2 OSIDemo_GU1 Generator.Line Voltage BC.90cc345e-520f-5284-187b-d
 _________________________ ___ ___ ___

 04-November-2021 20:25:12 3.3011 3.3298 3.32
 05-November-2021 00:25:12 3.2908 3.3053 3.32
 05-November-2021 04:25:12 3.2805 3.2808 3.32
 05-November-2021 08:25:12 3.3102 3.3194 3.2912
 05-November-2021 12:25:12 3.3047 3.3092 3.3196
 05-November-2021 16:25:12 3.2832 3.3094 3.2992
 05-November-2021 20:25:12 3.2806 3.3188 3.3096
 06-November-2021 00:25:12 3.3188 3.32 3.3184
 06-November-2021 04:25:12 3.2808 3.2812 3.3088
 06-November-2021 08:25:12 3.2896 3.2906 3.3198
 06-November-2021 12:25:12 3.3088 3.3192 3.32
 06-November-2021 16:25:12 3.3184 3.2806 3.3184
 06-November-2021 20:25:12 3.3 3.3188 3.3004
 07-November-2021 00:25:12 3.3008 3.2992 3.3097
 07-November-2021 04:25:12 3.3188 3.2908 3.2816
 07-November-2021 08:25:12 3.3104 3.3196 3.2992
 ⋮

View Each Voltage in a Separate Timetable

View voltage AB in its own timetable if you like.

21 Industrial Communication Toolbox Examples

21-84

lineVoltageAB = cVoltageTT.Properties.VariableNames{1};
vabTT = timetable(cVoltageTT.(lineVoltageAB)(:), 'RowTimes', cVoltageTT.Time(:), 'VariableNames', {char(lineVoltageAB)})

vabTT=281×1 timetable
 Time OSIDemo_GU1 Generator.Line Voltage AB.373eb947-c651-5aef-1948-a
 _________________________ ___

 04-November-2021 20:25:12 3.3011
 05-November-2021 00:25:12 3.2908
 05-November-2021 04:25:12 3.2805
 05-November-2021 08:25:12 3.3102
 05-November-2021 12:25:12 3.3047
 05-November-2021 16:25:12 3.2832
 05-November-2021 20:25:12 3.2806
 06-November-2021 00:25:12 3.3188
 06-November-2021 04:25:12 3.2808
 06-November-2021 08:25:12 3.2896
 06-November-2021 12:25:12 3.3088
 06-November-2021 16:25:12 3.3184
 06-November-2021 20:25:12 3.3
 07-November-2021 00:25:12 3.3008
 07-November-2021 04:25:12 3.3188
 07-November-2021 08:25:12 3.3104
 ⋮

View voltage AC in its own timetable.

lineVoltageAC = cVoltageTT.Properties.VariableNames{2};
vacTT = timetable(cVoltageTT.(lineVoltageAC)(:), 'RowTimes', cVoltageTT.Time(:), 'VariableNames', {char(lineVoltageAC)})

vacTT=281×1 timetable
 Time OSIDemo_GU1 Generator.Line Voltage AC.a809d1f1-c08f-54f9-0915-2
 _________________________ ___

 04-November-2021 20:25:12 3.3298
 05-November-2021 00:25:12 3.3053
 05-November-2021 04:25:12 3.2808
 05-November-2021 08:25:12 3.3194
 05-November-2021 12:25:12 3.3092
 05-November-2021 16:25:12 3.3094
 05-November-2021 20:25:12 3.3188
 06-November-2021 00:25:12 3.32
 06-November-2021 04:25:12 3.2812
 06-November-2021 08:25:12 3.2906
 06-November-2021 12:25:12 3.3192
 06-November-2021 16:25:12 3.2806
 06-November-2021 20:25:12 3.3188
 07-November-2021 00:25:12 3.2992
 07-November-2021 04:25:12 3.2908
 07-November-2021 08:25:12 3.3196
 ⋮

View voltage BC in its own timetable.

lineVoltageBC = cVoltageTT.Properties.VariableNames{3};
vbcTT = timetable(cVoltageTT.(lineVoltageBC)(:), 'RowTimes', cVoltageTT.Time(:), 'VariableNames', {char(lineVoltageBC)})

 Process PI Data Using Common MATLAB Operations

21-85

vbcTT=281×1 timetable
 Time OSIDemo_GU1 Generator.Line Voltage BC.90cc345e-520f-5284-187b-d
 _________________________ ___

 04-November-2021 20:25:12 3.32
 05-November-2021 00:25:12 3.32
 05-November-2021 04:25:12 3.32
 05-November-2021 08:25:12 3.2912
 05-November-2021 12:25:12 3.3196
 05-November-2021 16:25:12 3.2992
 05-November-2021 20:25:12 3.3096
 06-November-2021 00:25:12 3.3184
 06-November-2021 04:25:12 3.3088
 06-November-2021 08:25:12 3.3198
 06-November-2021 12:25:12 3.32
 06-November-2021 16:25:12 3.3184
 06-November-2021 20:25:12 3.3004
 07-November-2021 00:25:12 3.3097
 07-November-2021 04:25:12 3.2816
 07-November-2021 08:25:12 3.2992
 ⋮

Visualize Tag Values of Voltages

To visualize values of interest, voltages from the timetables can be plotted over time for further
analysis.

subplot(3, 1, 1)
plot(vabTT.Time, vabTT.("OSIDemo_GU1 Generator.Line Voltage AB.373eb947-c651-5aef-1948-a"), "r")
title("{\itVoltage AB}", "FontWeight", "bold")
xlabel("Timestamp")
ylabel("Voltage")
subplot(3, 1, 2)
plot(vacTT.Time, vacTT.("OSIDemo_GU1 Generator.Line Voltage AC.a809d1f1-c08f-54f9-0915-2"), "g")
title("{\itVoltage AC}", "FontWeight", "bold")
xlabel("Timestamp")
ylabel("Voltage")
subplot(3, 1, 3)
plot(vbcTT.Time, vbcTT.("OSIDemo_GU1 Generator.Line Voltage BC.90cc345e-520f-5284-187b-d"), "b")
title("{\itVoltage BC}", "FontWeight", "bold")
xlabel("Timestamp")
ylabel("Voltage")

21 Industrial Communication Toolbox Examples

21-86

Cleanup

When you are finished working with the PI Server, disconnect and remove the client by clearing its
variable from the workspace.

clear client;

 Process PI Data Using Common MATLAB Operations

21-87

Get Started with MQTT

This example shows how to establish a secure connection in MATLAB with an MQTT broker and
communicate with the MQTT broker.

ThingSpeak™ is used as the broker in this example.

Message Queuing Telemetry Transport (MQTT) is an OASIS standard messaging protocol for the
Internet of Things (IoT). It is designed as an extremely lightweight publish/subscribe messaging
transport that is ideal for connecting remote devices with a small code footprint and minimal network
bandwidth.

ThingSpeak is an IoT analytics platform service that allows you to aggregate, visualize, and analyze
live data streams in the cloud. You can send data to ThingSpeak from your devices, create instant
visualization of live data, and send alerts.

Set Up the Broker and Get a Root Certificate

To establish a connection with ThingSpeak, see “Create a ThingSpeak MQTT Device” (ThingSpeak).
After creating the ThingSpeak MQTT device, you can get its Client ID, Username and Password from
it. Assign those values in MATLAB®.

clientID = "Your Client ID";
userName = "Your Username";
password = "Your Password";

Download the root certificate from thingspeak.com as described in How to Download Root Certificate
for Use With Industrial Communication Toolbox MQTT Functions. Get the path of the downloaded
root certificate. The location and file name extension depends on the browser you use. For example,
using Edge you might set rootCert like this:

rootCert = "C:\Downloads\DigiCert Global Root CA.crt";

The certificate saved from Firefox might have the file extension .pem.

Create an MQTT Client and Connect to the Broker with SSL

Prepare the broker address and port number you want to connect. In this case, set up a secure
connection to ThingSpeak via SSL with an appropriate port number.

brokerAddress = "ssl://mqtt3.thingspeak.com";
port = 8883;

Create an MQTT client using the mqttclient function.

mqClient = mqttclient(brokerAddress, Port = port, ClientID = clientID,...
 Username = userName, Password = password, CARootCertificate = rootCert);

Note that the Connected property indicates the connection to the broker has been established.

mqClient.Connected

ans = int32
 1

21 Industrial Communication Toolbox Examples

21-88

https://docs.oasis-open.org/mqtt/mqtt/
https://thingspeak.com/
https://www.mathworks.com/matlabcentral/answers/1889632-how-to-download-root-certificate-for-use-with-industrial-communication-toolbox-mqtt-functions
https://www.mathworks.com/matlabcentral/answers/1889632-how-to-download-root-certificate-for-use-with-industrial-communication-toolbox-mqtt-functions

Subscribe to a Topic

With the connected MQTT client, use the subscribe function to subscribe to the topic of interest.
The displayed table shows the subscribed topic. For details about the topics to subscribe to in
ThingSpeak, see Subscribe to a Channel Field Feed (ThingSpeak).

topicToSub = "channels/1393455/subscribe/fields/field2";
subscribe(mqClient, topicToSub)

ans=1×3 table
 Topic QualityOfService Callback
 __ ________________ ________

 "channels/1393455/subscribe/fields/field2" 0 ""

Write to a Topic

To verify that the subscription is successful, make sure a message written to the subscribed topic is
received by the MQTT client.

Use the write function to write messages to the topic of interest. For details about the topics to
write to in ThingSpeak, see Publish to a Channel Field Feed (ThingSpeak).

topicToWrite = "channels/1393455/publish/fields/field2";
msg = "70";
write(mqClient, topicToWrite, msg)

Peek at the MQTT Client

Use the peek function to view the most recently received message for all subscribed topics in the
MQTT client. The displayed timetable indicates the MQTT client has successfully received the
message from the broker.

peek(mqClient)

ans=1×2 timetable
 Time Topic Data
 ____________________ __ ____

 06-Jan-2022 10:42:29 "channels/1393455/subscribe/fields/field2" "70"

Close the MQTT Client

Close the connection to ThingSpeak by clearing the MQTT client variable from the workspace.

clear mqClient

 Get Started with MQTT

21-89

Get Data from Subscribed Topics in an MQTT Client

This example shows how to get data from subscribed topics in an MQTT client.

ThingSpeak™ is used as the broker in this example.

Message Queuing Telemetry Transport (MQTT) is an OASIS standard messaging protocol for the
Internet of Things (IoT). It is designed as an extremely lightweight publish/subscribe messaging
transport that is ideal for connecting remote devices with a small code footprint and minimal network
bandwidth.

ThingSpeak is an IoT analytics platform service that allows you to aggregate, visualize, and analyze
live data streams in the cloud. You can send data to ThingSpeak from your devices, create instant
visualization of live data, and send alerts.

Create an MQTT Client and Connect to the Broker

Set up a ThingSpeak broker and get Client ID, Username, and Password from it. Assign those values
in MATLAB®.

clientID = "Your Client ID";
userName = "Your Username";
password = "Your Password";

Download the root certificate from thingspeak.com as described in How to Download Root Certificate
for Use With Industrial Communication Toolbox MQTT Functions. Get the path of the downloaded
root certificate. The location and file name extension depends on the browser you use. For example,
using Edge you might set rootCert like this:

rootCert = "C:\Downloads\DigiCert Global Root CA.crt";

The certificate saved from Firefox might have the file extension .pem.

Establish a secure connection to ThingSpeak with an appropriate port number using the mqttclient
function.

brokerAddress = "ssl://mqtt3.thingspeak.com";
port = 8883;
mqClient = mqttclient(brokerAddress, Port = port, ClientID = clientID,...
 Username = userName, Password = password, CARootCertificate = rootCert);

Subscribe to a Topic

Use the subscribe function to subscribe to the topic of interest. After subscription, the MQTT client
in MATLAB receives and stores all the data written to the topic of interest.

topicToSub = "channels/1393455/subscribe/fields/field2";
subscribe(mqClient, topicToSub)

ans=1×3 table
 Topic QualityOfService Callback
 __ ________________ ________

 "channels/1393455/subscribe/fields/field2" 0 ""

21 Industrial Communication Toolbox Examples

21-90

https://docs.oasis-open.org/mqtt/mqtt/
https://thingspeak.com/
https://www.mathworks.com/matlabcentral/answers/1889632-how-to-download-root-certificate-for-use-with-industrial-communication-toolbox-mqtt-functions
https://www.mathworks.com/matlabcentral/answers/1889632-how-to-download-root-certificate-for-use-with-industrial-communication-toolbox-mqtt-functions

Write to the Subscribed Topic

Use the write function to write messages to the topic of interest. In this case, 3 messages are
written to the subscribed topic. Pause for a few seconds after each write to avoid violating the rate
limits in ThingSpeak.

topicToWrite = "channels/1393455/publish/fields/field2";
msg1 = "70";
msg2 = "73";
msg3 = "69";
write(mqClient, topicToWrite, msg1)
pause(2)
write(mqClient, topicToWrite, msg2)
pause(2)
write(mqClient, topicToWrite, msg3)
pause(2)

Read Received Data from the Subscribed Topic

Use the read function to read all data received from the subscribed topic into a timetable. Note that
read removes all the data stored in the subscribed topic you just read from.

dataTT = read(mqClient)

dataTT=3×2 timetable
 Time Topic Data
 ____________________ __ ____

 06-Jan-2022 14:21:50 "channels/1393455/subscribe/fields/field2" "70"
 06-Jan-2022 14:21:52 "channels/1393455/subscribe/fields/field2" "73"
 06-Jan-2022 14:21:54 "channels/1393455/subscribe/fields/field2" "69"

Visualize the Received Data

To visualize the information, plot the received data from the subscribed topic.

t = dataTT.Time;
data = str2double(dataTT.Data);
plot(t, data, 'o-')
title(topicToSub)
xlabel("Time")
ylabel("Data Value")

 Get Data from Subscribed Topics in an MQTT Client

21-91

Close the MQTT Client

Close access to ThingSpeak by clearing the MQTT client variable from the workspace.

clear mqClient

21 Industrial Communication Toolbox Examples

21-92

Subscribe to an MQTT Topic with a Callback Function

This example shows how to use an MQTT client to subscribe to a topic with a callback function.

ThingSpeak™ is used as the broker in this example.

Message Queuing Telemetry Transport (MQTT) is an OASIS standard messaging protocol for the
Internet of Things (IoT). It is designed as an extremely lightweight publish/subscribe messaging
transport that is ideal for connecting remote devices with a small code footprint and minimal network
bandwidth.

ThingSpeak is an IoT analytics platform service that allows you to aggregate, visualize, and analyze
live data streams in the cloud. You can send data to ThingSpeak from your devices, create instant
visualization of live data, and send alerts.

Create an MQTT Client and Connect to the Broker

Set up a ThingSpeak broker and get Client ID, Username, and Password from it. Assign those values
in MATLAB®.

clientID = "Your Client ID";
userName = "Your Username";
password = "Your Password";

Download the root certificate from thingspeak.com as described in How to Download Root Certificate
for Use With Industrial Communication Toolbox MQTT Functions. Get the path of the downloaded
root certificate. The location and file name extension depends on the browser you use. For example,
using Edge you might set rootCert like this:

rootCert = "C:\Downloads\DigiCert Global Root CA.crt";

The certificate saved from Firefox might have the file extension .pem.

Establish a secure connection to ThingSpeak with an appropriate port number using the mqttclient
function.

brokerAddress = "ssl://mqtt3.thingspeak.com";
port = 8883;
mqClient = mqttclient(brokerAddress, Port = port, ClientID = clientID,...
 Username = userName, Password = password, CARootCertificate = rootCert);

Subscribe to a Topic with a Callback Function

To subscribe with a callback function, create a callback function named showmessage. The
showmessage function prints the received data and corresponding topic when triggered.

Use the subscribe function to subscribe to the topic of interest. Use a Name-Value pair argument to
assign the callback function at the same time. The displayed table shows the subscribed topic and the
corresponding callback function.

topicToSub = "channels/1393455/subscribe/fields/field2";
subscribe(mqClient, topicToSub, Callback = "showmessage")

ans=1×3 table
 Topic QualityOfService Callback

 Subscribe to an MQTT Topic with a Callback Function

21-93

https://docs.oasis-open.org/mqtt/mqtt/
https://thingspeak.com/
https://www.mathworks.com/matlabcentral/answers/1889632-how-to-download-root-certificate-for-use-with-industrial-communication-toolbox-mqtt-functions
https://www.mathworks.com/matlabcentral/answers/1889632-how-to-download-root-certificate-for-use-with-industrial-communication-toolbox-mqtt-functions

 __ ________________ _____________

 "channels/1393455/subscribe/fields/field2" 0 "showmessage"

Write to the Subscribed Topic

To trigger the callback function, the MQTT client needs to receive messages for the subscribed topic.
Use the write function to write messages to the subscribed topic.

topicToWrite = "channels/1393455/publish/fields/field2";
msg = "70";
write(mqClient, topicToWrite, msg)

Trigger Callback Function

Pause to allow the message to transfer from the MQTT client, to the MQTT broker, and back to the
client.

pause(2)

When the MQTT client receives the message from the subscribed topic, the callback function
showmessage is automatically triggered. The following context is printed in the MATLAB Command
Window.

Topic: channels/1393455/subscribe/fields/field2, Message: 70

Close the MQTT Client

Close access to ThingSpeak by clearing the MQTT client variable from the workspace.

clear mqClient

21 Industrial Communication Toolbox Examples

21-94

Subscribe to an MQTT Wildcard Topic

This example shows how to use an MQTT client to subscribe to a wildcard topic.

ThingSpeak™ is used as the broker in this example.

Message Queuing Telemetry Transport (MQTT) is an OASIS standard messaging protocol for the
Internet of Things (IoT). It is designed as an extremely lightweight publish/subscribe messaging
transport that is ideal for connecting remote devices with a small code footprint and minimal network
bandwidth.

ThingSpeak is an IoT analytics platform service that allows you to aggregate, visualize, and analyze
live data streams in the cloud. You can send data to ThingSpeak from your devices, create instant
visualization of live data, and send alerts.

Create an MQTT Client and Connect to the Broker

Set up a ThingSpeak broker and get Client ID, Username, and Password from it. Assign those values
in MATLAB®.

clientID = "Your Client ID";
userName = "Your Username";
password = "Your Password";

Download the root certificate from thingspeak.com as described in How to Download Root Certificate
for Use With Industrial Communication Toolbox MQTT Functions. Get the path of the downloaded
root certificate. The location and file name extension depend on the browser you use. For example,
using Edge you might set rootCert like this:

rootCert = "C:\Downloads\DigiCert Global Root CA.crt";

The certificate saved from Firefox might have the file extension .pem.

Establish a secure connection to ThingSpeak with an appropriate port number using the mqttclient
function.

brokerAddress = "ssl://mqtt3.thingspeak.com";
port = 8883;
mqClient = mqttclient(brokerAddress, Port = port, ClientID = clientID,...
 Username = userName, Password = password, CARootCertificate = rootCert);

Subscribe to a Wildcard Topic

To subscribe to all the topics under a certain hierarchy, use the subscribe function with a wildcard
to make the subscription easier. The displayed table shows the wildcard topic has been subscribed
successfully.

topicWildcard = "channels/1393455/subscribe/fields/+";
subscribe(mqClient, topicWildcard)

ans=1×3 table
 Topic QualityOfService Callback
 _____________________________________ ________________ ________

 "channels/1393455/subscribe/fields/+" 0 ""

 Subscribe to an MQTT Wildcard Topic

21-95

https://docs.oasis-open.org/mqtt/mqtt/
https://thingspeak.com/
https://www.mathworks.com/matlabcentral/answers/1889632-how-to-download-root-certificate-for-use-with-industrial-communication-toolbox-mqtt-functions
https://www.mathworks.com/matlabcentral/answers/1889632-how-to-download-root-certificate-for-use-with-industrial-communication-toolbox-mqtt-functions

Write to Different Topics Under the Wildcard

To verify that the wildcard subscription is successful, make sure the messages written to different
topics under the wildcard subscription are received by the MQTT client.

Use the write function to write messages to different topics under the wildcard. Pause for a few
seconds after each write to avoid violating the rate limits in ThingSpeak.

topicToWrite1 = "channels/1393455/publish/fields/field1";
topicToWrite2 = "channels/1393455/publish/fields/field2";
msg1 = "60";
msg2 = "30";
write(mqClient, topicToWrite1, msg1)
pause(2)
write(mqClient, topicToWrite2, msg2)
pause(2)

Peek at the MQTT Client

Use the peek function to view the most recently received data for all subscribed topics. The displayed
timetable indicates that the messages under the wildcard have been received successfully.

peek(mqClient)

ans=2×2 timetable
 Time Topic Data
 ____________________ __ ____

 06-Jan-2022 13:36:40 "channels/1393455/subscribe/fields/field1" "60"
 06-Jan-2022 13:36:43 "channels/1393455/subscribe/fields/field2" "30"

Close the MQTT Client

Close access to ThingSpeak by clearing the MQTT client variable from the workspace.

clear mqClient

21 Industrial Communication Toolbox Examples

21-96

	Getting Started
	Introduction
	Industrial Communication Toolbox Product Description
	Overview of OPC, Servers, and the Toolbox
	About Industrial Communication Toolbox Software
	About OPC
	OPC Servers
	System Requirements

	Get Command-Line Function Help
	Set Up Industrial Communication Toolbox Software for OPC
	Preparation Overview
	Set Up for Communicating with OPC DA and OPC HDA Servers
	Install an OPC DA or HDA Simulation Server for OPC Classic Examples
	Set Up for Communicating with OPC UA Servers
	Install an OPC UA Simulation Server for OPC UA Examples
	(Optional) Install a Local Discovery Service for OPC UA Server Discovery Examples

	Troubleshooting OPC Issues
	Unable to Find an OPC Server
	“Class not registered” Error
	Unable to Query the Server
	Unable to Connect to Server
	Unable to Create a Group
	Error While Querying Interface

	Quick Start: Using OPC Data Access Functions
	Access Data at the Command Line
	DA Programming Overview
	Step 1: Locate Your OPC Data Access Server
	Step 2: Create an OPC Data Access Client Object
	Step 3: Connect to the OPC Data Access Server
	Step 4: Create an OPC Data Access Group Object
	Step 5: Browse the Server Name Space
	Step 6: Add OPC Data Access Items to the Group
	Step 7: View All Item Values
	Step 8: Configure Group Properties for Logging
	Step 9: Log OPC Server Data
	Step 10: Plot the Data
	Step 11: Clean Up

	Quick Start: Using the OPC Data Access Explorer
	Access Data with the OPC Data Access Explorer
	Procedure Overview
	Step 1: Open the OPC Data Access Explorer
	Step 2: Locate Your OPC Server
	Step 3: Create an OPC Data Access Client Object
	Step 4: Connect to the OPC Server
	Step 5: Create an OPC Data Access Group Object
	Step 6: Browse the Server Name Space
	Step 7: Add OPC Data Access Items to the Group
	Step 8: View All Item Values
	Step 9: Configure Group Properties for Logging
	Step 10: Log OPC Server Data
	Step 11: Plot the Data
	Step 12: Clean Up

	Quick Start: Using OPC Historical Data Access Functions
	Access Historical Data
	HDA Programming Overview
	Step 1: Locate Your OPC Historical Data Access Server
	Step 2: Create an OPC Historical Data Access Client Object
	Step 3: Connect to the OPC Historical Data Access Server
	Step 4: Retrieve Historical Data
	Step 5: Plot the Data
	Step 6: Clean Up

	Data Access User's Guide
	Introduction to OPC Data Access (DA)
	Discover Available Data Access Servers
	Prerequisites
	Determine Server IDs for a Host

	Connect to OPC Data Access Servers
	Overview
	Create a DA Client Object
	Connect a Client to the DA Server
	Browse the OPC DA Server Name Space

	Using OPC Data Access Objects
	Create OPC Data Access Objects
	Overview to Objects
	Toolbox Object Hierarchy for the Data Access Standard
	How Toolbox OPC Objects Relate to OPC DA Servers
	Create Data Access Group Objects
	Create Data Access Item Objects
	Build an Object Hierarchy with a Disconnected Client
	Create OPC Data Access Object Vectors
	Work with Public Groups

	Configure OPC Data Access Object Properties
	Purpose of Object Properties
	View the Values of Object Properties
	View the Value of a Particular Property
	Get Information About Object Properties
	Set the Value of an Object Property
	View a List of All Settable Object Properties

	Delete Objects
	Save and Load Objects

	Reading, Writing, and Logging OPC Data
	Read and Write Data on OPC DA Server
	Introduction to Reading and Writing
	Read Data from an Item
	Write Data to an Item
	Read and Write Multiple Values

	Data Change Events and Subscription
	Introduction to Data Change Events
	Configure OPC Objects for Data Change Events
	How Data Change Events are Processed
	Customize the Data Change Event Response

	Log OPC Server Data
	How Data Is Logged
	Configure a Logging Session
	Execute a Logging Task
	Get Logged Data into the MATLAB Workspace

	Working with OPC Data
	OPC Data: Value, Quality, and TimeStamp
	Introduction to OPC Data
	Relationship Between Value, Quality, and TimeStamp
	How Value, Quality, and TimeStamp Are Obtained

	Work with Structure-Formatted Data
	When Structures Are Used
	Perform a Read Operation on Multiple Items
	Interpret Structure-Formatted Data
	When to Use Structure-Formatted Data
	Convert Structure-Formatted Data to Array Format

	Array-Formatted Data
	Array Content
	Conversion of Logged Data to Arrays

	Work with Different Data Types
	Conversion Between MATLAB Data Types and COM Variant Data Types
	Conversion of Values Written to an OPC Server
	Conversion of Values Read from an OPC Server
	Handling Arrays for Item Values

	Using Events and Callbacks
	Use the Default Callback Function
	Overview to Callback Example
	Step 1: Create OPC Group Objects
	Step 2: Configure the Logging Task Properties
	Step 3: Configure the Callback Properties
	Step 4: Start the Logging Task
	Step 5: Clean Up

	Event Types
	Retrieve Event Information
	Event Structures
	Access Data in the Event Log

	Create and Execute Callback Functions
	Create Callback Functions
	Specify Callback Functions
	View Recently Logged Data

	Using the OPC Block Library
	Block Library Overview
	Read and Write Data from a Model
	Example Overview
	Step 1: Create New Model in Simulink Editor
	Step 2: Open the OPC Block Library
	Step 3: Drag OPC Blocks into the Editor
	Step 4: Drag Other Blocks to Complete the Model
	Step 5: Configure OPC Servers for the Model
	Step 6: Specify the Block Parameter Values
	Step 7: Connect the Blocks
	Step 8: Run the Simulation

	Use the OPC Client Manager
	Introduction to the OPC Client Manager
	Add Clients to the OPC Client Manager
	Remove Clients from the OPC Client Manager
	Modify the Server Timeout Value for a Client
	Control Client/Server Connections

	Properties
	opcda Object
	dagroup Object
	daitem Object

	Historical Data Access User's Guide
	Introduction to OPC Historical Data Access (HDA)
	OPC Historical Data Access
	Discover Available HDA Servers
	Prerequisites
	Determine HDA Server IDs for a Host

	Connect to OPC HDA Servers
	Overview
	Create an HDA Client Object
	View a Summary of a Client Object
	Connect an OPC HDA Client Object to the HDA Server
	Browse the OPC Server Name Space
	Get an OPC HDA Server Name Space

	Using OPC HDA Client Objects
	OPC HDA Objects
	Locate an OPC HDA Server
	Create an OPC HDA Client Object
	Connect to the OPC HDA Server
	Browse the OPC Server Name Space

	Set Client Properties
	Set the Timeout Property

	Retrieve an OPC HDA Server Name Space
	Read Item Attributes

	Reading OPC Historical Data
	Overview to Reading Historical Data
	Read Historical Data Over a Time Range
	Read Historical Data at Specific Times
	Read Processed Aggregate Data
	Retrieve Large Historical Data Sets
	Reading Modified Data
	Native MATLAB Data Types from Read Operations
	Request Structure Output
	Request MATLAB Numeric Data Output
	Request Cell Array Output

	Disconnect from HDA Servers
	Clean Up OPC HDA Objects

	Working with OPC HDA Data Objects
	Introduction to OPC HDA Data Objects
	Display Data Objects
	OPC HDA Quality Values
	Manipulate Data Using OPC HDA Objects
	Resample Data Objects to Include All Available Time Stamps Using tsunion
	Resample Data Objects to Include All Common Time Stamps Using tsintersect
	Resample Data to a New Set of Time Stamps
	Convert OPC HDA Data Objects to MATLAB Numeric Data Types

	OPC HDA and UA Classes
	opc.hda.AggregateTypes
	opc.hda.Data
	opc.hda.ItemAttributes
	opc.hda.ServerInfo

	Unified Architecture User’s Guide
	OPC Unified Architecture (UA)
	About OPC Unified Architecture
	OPC UA Components
	Overview
	OPC UA Client
	OPC UA Node
	OPC UA Data
	OPC UA Quality
	Working with Time in OPC UA

	OPC UA Server Data Types
	OPC UA Security
	OPC UA Certificate Management
	OPC UA Aggregate Functions
	Introduction
	Available Aggregate Functions on an OPC UA Server
	OPC UA Standard Aggregate Functions

	Access Data from OPC UA Servers
	OPC UA Programming Overview
	Step 1: Locate Your OPC UA Server
	Step 2: Create an OPC UA Client and Connect to the Server
	Step 3: Browse OPC UA Server Namespace
	Step 4: Read Current Values from the OPC UA Server
	Step 5: Read Historical Data from the OPC UA Server
	Step 6: Plot the Data
	Step 7: Clean Up

	Non-OPC Technologies
	Controlling Devices Using Modbus
	Modbus Interface Supported Features
	Modbus Capabilities
	Supported Platforms for Modbus

	Create a Modbus Connection
	Configure Properties for Modbus Communication
	Read Data from a Modbus Server
	Types of Data You Can Read over Modbus
	Read Coils over Modbus
	Read Inputs over Modbus
	Read Input Registers over Modbus
	Read Holding Registers over Modbus
	Specify Server ID and Precision
	Read Mixed Data Types

	Read Temperature from a Remote Temperature Sensor
	Write Data to a Modbus Server
	Types of Data You Can Write to over Modbus
	Write Coils over Modbus
	Write Holding Registers over Modbus

	Write and Read Multiple Holding Registers
	Modify the Contents of a Holding Register Using a Mask Write
	Use the Modbus Explorer App
	Configure a Connection in the Modbus Explorer
	Communicate over TCP/IP
	Communicate over Serial RTU

	Read Coils, Inputs, and Registers in the Modbus Explorer
	Edit the Read Registers Table
	Import or Export Read Data

	Write to Coils and Holding Registers in the Modbus Explorer
	Control a PLC Using the Modbus Explorer
	Generate a Script from Your Modbus Explorer Session
	Troubleshooting the Modbus Interface
	Supported Platforms
	Configuration and Connection
	Other Troubleshooting Tips for Modbus

	OPC Information Reference
	OPC Quality
	OPC Quality
	Major Quality
	Quality Substatus
	Limit Status

	OPC DA Server Item Properties
	OPC DA Server Item Properties
	OPC Item Property Set
	OPC Specific Properties
	OPC Recommended Properties

	OPC HDA Item Attributes
	OPC HDA Item Attributes

	Functions
	addgroup
	additem
	arrayHasSameTimeStamp
	browsenamespace
	browseNameSpace
	browseNamespace
	cancelasync
	cleareventlog
	clonegroup
	connect
	connect
	copyobj
	delete
	disconnect
	disconnect
	disp
	double
	exportClientCertificate
	findDescription
	findDescription
	findNodeById
	findNodeByName
	flatnamespace
	flush
	flushdata
	genslread
	genslwrite
	get
	getAllChildren
	getDescription
	getdata
	getIDFromName
	getIDList
	getIndexFromID
	getNameList
	getnamespace
	getNameSpace
	getNamespace
	getNodeAttributes
	getServerStatus
	int16
	int32
	int64
	int8
	isConnected
	isConnected
	isEmptyNode
	isObjectType
	isvalid
	isVariableType
	load
	logical
	makepublic
	maskWrite
	modbus
	Modbus Explorer
	mqttclient
	obj2mfile
	opccallback
	opcda
	OPC Data Access Explorer
	opc.daQualityString
	opc.daSupport
	opcfind
	opc.getDateDisplayFormat
	opchda
	opc.hda.Client
	opc.hda.getServerInfo
	opc.hdaQualityString
	opc.hda.reset
	opchdaserverinfo
	opc.hdaSupport
	opchelp
	opcqid
	opcqparts
	opcqstr
	opcread
	opcregister
	opcreset
	opcserverinfo
	opc.setDateDisplayFormat
	opcstruct2array
	opcstruct2timeseries
	opcsupport
	opcua
	opcuanode
	opcuaserverinfo
	openosf
	peek
	peekdata
	piclient
	plot
	propinfo
	read
	read
	read
	read
	readasync
	readAtTime
	readAtTime
	readHistory
	readItemAttributes
	readModified
	readProcessed
	readProcessed
	readRaw
	readValue
	refresh
	removepublicgroup
	resample
	save
	serveritemprops
	serveritems
	set
	setSecurityModel
	showopcevents
	showValues
	single
	stairs
	start
	stop
	subscribe
	tags
	trend
	tsintersect
	tsunion
	uint16
	uint32
	uint64
	uint8
	unsubscribe
	PI Viewer
	wait
	write
	write
	write
	writeasync
	writeRead
	writeValue

	Blocks
	OPC Configuration
	OPC Quality Parts
	OPC Read
	OPC Write

	Industrial Communication Toolbox Examples
	Install a Simulation Server for OPC Examples
	Acquire Data from an OPC Data Access Server
	Locate and Browse OPC Data Access Servers
	Create and Configure OPC Objects
	Manage OPC Data Access Objects
	Read and Write Data to an OPC Data Access Server
	Log Data from an OPC Data Access Server
	View the OPC Event Log
	Monitor Logging Progress with Callbacks
	Update MATLAB Plots While Logging OPC Data
	Locate and Browse OPC Historical Data Access Servers
	Acquire Data from an OPC Historical Data Access Server
	Visualize and Preprocess OPC HDA Data
	Browse OPC UA Server Namespace
	Read and Write Current OPC UA Server Data
	Read Historical OPC UA Server Data
	Visualize and Preprocess OPC UA Data
	Read and Write to an OPC Data Access Server from Simulink
	Use OPC Data to Test a Binary Distillation Column Plant Model
	Get Started Accessing Data from a PI Server
	Read Data from a PI Server
	Process PI Data Using Common MATLAB Operations
	Get Started with MQTT
	Get Data from Subscribed Topics in an MQTT Client
	Subscribe to an MQTT Topic with a Callback Function
	Subscribe to an MQTT Wildcard Topic

